已知雙曲線y2a2-x2b2=1(a>0,b>0),點(diǎn)F為其上焦點(diǎn),過(guò)點(diǎn)F作一條與雙曲線的漸近線相垂直的直線交雙曲線的漸近線于M,N兩點(diǎn),其中點(diǎn)M為垂足,點(diǎn)M在第二象限,且點(diǎn)N在第一象限,若滿足3|OM|=|ON|(O為坐標(biāo)原點(diǎn)),則該雙曲線的離心率為( )
y
2
a
2
-
x
2
b
2
=
1
(
a
>
0
,
b
>
0
)
【考點(diǎn)】求雙曲線的離心率.
【答案】B
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:37引用:2難度:0.6
相似題
-
1.已知F1、F2為雙曲線C1:
=1(a>0,b>0)的焦點(diǎn),P為x2+y2=c2與雙曲線C1的交點(diǎn),且有tan∠PF1F2=x2a2-y2b2,則該雙曲線的離心率為( ?。?/h2>13發(fā)布:2024/12/19 0:0:2組卷:70引用:4難度:0.6 -
2.已知雙曲線
=1(a>0,b>0)的一條漸近線的方程是y=x2a2-y2b2x,則該雙曲線的離心率為( )32發(fā)布:2025/1/5 18:30:5組卷:227引用:3難度:0.7 -
3.設(shè)a>1,則雙曲線
的離心率e的取值范圍是( ?。?/h2>x2a2-y2(a+1)2=1發(fā)布:2024/12/29 0:0:2組卷:790引用:17難度:0.7