試卷征集
加入會(huì)員
操作視頻

在?ABCD中,點(diǎn)B關(guān)于A(yíng)D的對(duì)稱(chēng)點(diǎn)為B′,連接AB′,CB′,CB′交AD于F點(diǎn).
(1)如圖1,∠ABC=90°,求證:FB′=FC;
(2)小宇通過(guò)觀(guān)察、實(shí)驗(yàn)、提出猜想:如圖2,在點(diǎn)B繞點(diǎn)A旋轉(zhuǎn)的過(guò)程中,點(diǎn)F始終為CB′的中點(diǎn).小宇把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:
想法1:過(guò)點(diǎn)B作B'G∥CD交AD于G點(diǎn),只需證三角形全等;
想法2:連接BB′交AD于H點(diǎn),只需證H為BB′的中點(diǎn);
想法3:連接BB′,BF,只需證∠B′BC=90°.FB′=FB=FC
……
請(qǐng)你參考上面的想法,證明F為CB′的中點(diǎn).(一種方法即可)
(3)如圖3,當(dāng)∠ABC=135°時(shí),AB′,CD的延長(zhǎng)線(xiàn)相交于點(diǎn)E,求
CE
AF
的值.

【考點(diǎn)】相似形綜合題
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/16 14:0:1組卷:368引用:4難度:0.1
相似題
  • 1.已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,E是上底AD的中點(diǎn),P是腰AB上一動(dòng)點(diǎn),連接PE并延長(zhǎng),交射線(xiàn)CD于點(diǎn)M,作EF⊥PE,交下底BC于點(diǎn)F,連接MF交AD于點(diǎn)N,連接PF,AB=AD=4,BC=6,點(diǎn)A、P之間的距離為x,△PEF的面積為y.
    (1)當(dāng)點(diǎn)F與點(diǎn)C重合時(shí),求x的值;
    (2)求y關(guān)于x的函數(shù)解析式,并寫(xiě)出它的定義域;
    (3)當(dāng)∠CMF=∠PFE時(shí),求△PEF的面積.

    發(fā)布:2025/1/28 8:0:2組卷:240引用:1難度:0.5
  • 2.【閱讀】“關(guān)聯(lián)”是解決數(shù)學(xué)問(wèn)題的重要思維方式,角平分線(xiàn)的有關(guān)聯(lián)想就有很多……
    (1)【問(wèn)題提出】如圖①,PC是△PAB的角平分線(xiàn),求證
    PA
    PB
    =
    AC
    BC

    小明思路:關(guān)聯(lián)“平行線(xiàn)、等腰三角形”,過(guò)點(diǎn)B作BD∥PA,交PC的延長(zhǎng)線(xiàn)于點(diǎn)D,利用“三角形相似”.
    小紅思路:關(guān)聯(lián)“角平分線(xiàn)上的點(diǎn)到角的兩邊的距離相等”,過(guò)點(diǎn)C分別作CD⊥PA交PA于點(diǎn)D,作CE⊥PB交PB于點(diǎn)E,利用“等面積法”.
    請(qǐng)根據(jù)小明或小紅的思路,選擇一種并完成證明;
    (2)【理解應(yīng)用】填空:如圖②,Rt△ABC中,∠B=90°,BC=3,AB=4,CD平分∠ACB交AB于點(diǎn)D,則BD長(zhǎng)度為
    ;
    (3)【深度思考】如圖③,在Rt△ABC中,∠BAC=90°,D是邊BC上一點(diǎn),連接AD,將△ACD沿AD所在直線(xiàn)折疊點(diǎn)C恰好落在邊AB上的E點(diǎn)處.若AC=1,AB=2,則DE的長(zhǎng)為
    ;
    (4)【拓展升華】如圖④,△ABC中,AB=6,AC=4,AD為∠BAC的角平分線(xiàn),AD的垂直平分線(xiàn)EF交BC延長(zhǎng)線(xiàn)于F,連接AF,當(dāng)BD=3時(shí),AF的長(zhǎng)為

    發(fā)布:2025/1/28 8:0:2組卷:314引用:1難度:0.1
  • 3.【感知】如圖①,在Rt△ABC中,∠ACB=90°,D、E分別是邊AC、BC的中點(diǎn),連接DE.則△CDE與△CAB的面積比為

    【探究】將圖①的△CDE繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)一定角度,使點(diǎn)E落在△ABC內(nèi)部,連接AD、BE,并延長(zhǎng)BE分別交AC、AD于點(diǎn)O、F,其它條件不變,如圖②.
    (1)求證:△ACD∽△BCE.
    (2)求證:AD⊥BF.
    【應(yīng)用】將圖②的△CDE繞著點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn),使點(diǎn)D恰好落在邊BC的延長(zhǎng)線(xiàn)上,連接AD、BE,BE的延長(zhǎng)線(xiàn)交AD于點(diǎn)F,其它條件不變,如圖③,若AC=4,BC=3,則BF的長(zhǎng)為

    發(fā)布:2025/1/28 8:0:2組卷:301引用:1難度:0.1
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱(chēng):菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶(hù)服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正