當(dāng)前位置:
試題詳情
歷史上第一個(gè)研究圓錐曲線的是梅納庫莫斯(公元前375年-325年),大約100年后,阿波羅尼斯更詳盡、系統(tǒng)地研究了圓錐曲線,并且他還進(jìn)一步研究了這些圓錐曲線的光學(xué)性質(zhì):如圖甲,從橢圓的一個(gè)焦點(diǎn)出發(fā)的光線或聲波,經(jīng)橢圓反射后,反射光線經(jīng)過橢圓的另一個(gè)焦點(diǎn),其中法線l′表示與橢圓C的切線垂直且過相應(yīng)切點(diǎn)的直線,利用橢圓的光學(xué)性質(zhì)解決以下問題:
如圖乙,橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)為F1(-c,0),F(xiàn)2(c,0)(c>0),由F1發(fā)出的光經(jīng)橢圓兩次反射后回到F1經(jīng)過的路程為833c.
(1)求橢圓C的離心率;
(2)點(diǎn)P是橢圓C上除頂點(diǎn)外的任意一點(diǎn),橢圓在點(diǎn)P處的切線為l,F2在l上的射影H在圓x2+y2=4上,求橢圓C的方程.
8
3
3
c
【考點(diǎn)】直線與橢圓的綜合.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/11/6 8:0:1組卷:138引用:1難度:0.5
相似題
-
1.已知橢圓E:
的右焦點(diǎn)為F(3,0),過點(diǎn)F的直線交橢圓于A,B兩點(diǎn),若AB的中點(diǎn)坐標(biāo)為(1,-1),則E的方程為( )x2a2+y2b2=1(a>b>0)發(fā)布:2024/12/3 9:0:2組卷:926引用:27難度:0.7 -
2.如果橢圓
的弦被點(diǎn)(4,2)平分,則這條弦所在的直線方程是( )x236+y29=1發(fā)布:2024/12/18 3:30:1組卷:451引用:3難度:0.6 -
3.已知
為橢圓A(-1,233),B(1,-233),P(x0,y0)上不同的三點(diǎn),直線l:x=2,直線PA交l于點(diǎn)M,直線PB交l于點(diǎn)N,若S△PAB=S△PMN,則x0=( ?。?/h2>C:x23+y22=1發(fā)布:2024/12/6 6:0:1組卷:231引用:6難度:0.5
把好題分享給你的好友吧~~