一種疫苗在正式上市之前要進行多次人體臨床試驗接種,假設(shè)每次接種之間互不影響,每人每次接種成功的概率相等.某醫(yī)學研究院研究團隊研發(fā)了新冠疫苗,并率先開展了新冠疫苗I期和II期臨床試驗.Ⅰ期試驗為了解疫苗接種劑量與接種成功之間的關(guān)系,選取了兩種劑量接種方案(0.5mL/次劑量組(低劑量)與1mL/次劑量組(中劑量)),臨床試驗免疫結(jié)果對比如下:
接種成功 | 接種不成功 | 總計(人) | |
0.5mL/次劑量組 | 28 | 8 | 36 |
1mL/次劑量組 | 33 | 3 | 36 |
總計(人) | 61 | 11 | 72 |
(2)若以數(shù)據(jù)中的頻率為概率,從兩組不同劑量組中分別抽取1名試驗者,以X表示這2人中接種成功的人數(shù),求X的分布列和數(shù)學期望.
參考方式:K2=
n
(
ad
-
bc
)
2
(
a
+
b
)
(
c
+
d
)
(
a
+
c
)
(
b
+
d
)
P(K2≥k0) | 0.4 | 0.25 | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 | 0.001 |
k | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:29引用:3難度:0.6
相似題
-
1.每年5月17日為國際電信日,某市電信公司每年在電信日當天對辦理應用套餐的客戶進行優(yōu)惠,優(yōu)惠方案如下:選擇套餐一的客戶可獲得優(yōu)惠200元,選擇套餐二的客戶可獲得優(yōu)惠500元,選擇套餐三的客戶可獲得優(yōu)惠300元.根據(jù)以往的統(tǒng)計結(jié)果繪出電信日當天參與活動的統(tǒng)計圖,現(xiàn)將頻率視為概率.
(1)求某兩人選擇同一套餐的概率;
(2)若用隨機變量X表示某兩人所獲優(yōu)惠金額的總和,求X的分布列和數(shù)學期望.發(fā)布:2024/12/18 8:0:1組卷:147引用:5難度:0.1 -
2.隨機變量X的分布列如表所示,若
,則D(3X-2)=.E(X)=13X -1 0 1 P 16a b 發(fā)布:2024/12/18 18:30:1組卷:211引用:9難度:0.6 -
3.某工廠有甲、乙、丙三條生產(chǎn)線同時生產(chǎn)同一產(chǎn)品,這三條生產(chǎn)線生產(chǎn)產(chǎn)品的次品率分別為6%,5%,4%,假設(shè)這三條生產(chǎn)線產(chǎn)品產(chǎn)量的比為5:7:8,現(xiàn)從這三條生產(chǎn)線上共任意選取100件產(chǎn)品,則次品數(shù)的數(shù)學期望為 .
發(fā)布:2024/12/15 19:0:2組卷:104引用:2難度:0.6
把好題分享給你的好友吧~~