中國宋代的數(shù)學(xué)家秦九韶曾提出“三斜求積術(shù)”,即假設(shè)在平面內(nèi)有一個三角形,邊長分別為a,b,c,三角形的面積S可由公式S=p(p-a)(p-b)(p-c)求得,其中p為三角形周長的一半,這個公式也被稱為海倫-秦九韶公式,現(xiàn)有一個三角形的邊長滿足a+b=12,c=8,則此三角形面積的最大值為( ?。?/h1>
S
=
p
(
p
-
a
)
(
p
-
b
)
(
p
-
c
)
【考點】基本不等式及其應(yīng)用.
【答案】B
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:425引用:20難度:0.7
把好題分享給你的好友吧~~