問題提出:
(1)我們把兩個面積相等但不全等的三角形叫做偏等積三角形.
如圖1,△ABC中,AC=7,BC=9,AB=10,P為AC上一點,當AP=3.53.5時,△ABP與△CBP是偏等積三角形;
問題探究:
(2)如圖2,△ABD與△ACD是偏等積三角形,AB=2,AC=6,且線段AD的長度為正整數(shù),則AD的長度為 33;
問題解決:
(3)如圖3,四邊形ABED是一片綠色花園,CA=CB,CD=CE,∠ACB=∠DCE=90°(0°<∠BCE<90°).△ACD與△BCE是偏等積三角形嗎?請說明理由.
問題拓展:
(4)如圖4,將△ABC分別以AB,BC,AC為邊向外作正方形ABDE,正方形BCFG,正方形ACMN,連接DG,F(xiàn)M,NE,則圖中有 66組偏等積三角形.![](https://img.jyeoo.net/quiz/images/svg/202311/284/1133d764.png)
【考點】四邊形綜合題.
【答案】3.5;3;6
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/5 0:0:1組卷:101引用:1難度:0.2
相似題
-
1.如圖,在菱形ABCD中,∠ABC=60°,AB=2.過點A作對角線BD的平行線與邊CD的延長線相交于點E.P為邊BD上的一個動點(不與端點B,D重合),連接PA,PE,AC.
(1)求證:四邊形ABDE是平行四邊形;
(2)求四邊形ABDE的周長和面積;
(3)記△ABP的周長和面積分別為C1和S1,△PDE的周長和面積分別為C2和S2,在點P的運動過程中,試探究下列兩個式子的值或范圍:①C1+C2,②S1+S2,如果是定值的,請直接寫出這個定值;如果不是定值的,請直接寫出它的取值范圍.發(fā)布:2025/1/28 8:0:2組卷:574引用:1難度:0.2 -
2.如圖,菱形ABCD中,AB=5,連接BD,sin∠ABD=
,點P是射線BC上一點(不與點B重合),AP與對角線BD交于點E,連接EC.55
(1)求證:AE=CE;
(2)當點P在線段BC上時,設(shè)BP=n(0<n<5),求△PEC的面積;(用含n的代數(shù)式表示)
(3)當點P在線段BC的延長線上時,若△PEC是直角三角形,請直接寫出BP的長.發(fā)布:2025/1/28 8:0:2組卷:254引用:1難度:0.1 -
3.如圖,在菱形ABCD中,AB=10,sinB=
,點E從點B出發(fā)沿折線B-C-D向終點D運動.過點E作點E所在的邊(BC或CD)的垂線,交菱形其它的邊于點F,在EF的右側(cè)作矩形EFGH.35
(1)如圖1,點G在AC上.求證:FA=FG.
(2)若EF=FG,當EF過AC中點時,求AG的長.
(3)已知FG=8,設(shè)點E的運動路程為s.當s滿足什么條件時,以G,C,H為頂點的三角形與△BEF相似(包括全等)?發(fā)布:2025/1/28 8:0:2組卷:1990引用:3難度:0.1
相關(guān)試卷