【問題提出】如圖1,△ABD、△ACE都是等邊三角形,求證:BE=DC.
【方法提煉】這兩個共頂點的等邊三角形,其在相對位置變化的同時,始終存在一對全等三角形,即△ADC≌△ABE.如果把小等邊三角形的一邊看作“小手”,大等邊三角形的一邊看作“大手”,這樣就類似“大手拉著小手”,不妨稱之為“手拉手”基本圖形,當圖形中只有一個等邊三角形時,可嘗試在它的一個頂點作另一個等邊三角形,構(gòu)造“手拉手”基本圖形,從而解決問題.
【方法應(yīng)用】
(1)等邊三角形ABC中,E是邊AC上一定點,D是直線BC上一動點,以DE為一邊作等邊三角形DEF,連接CF.
①如圖2,若點D在邊BC上,求證:CE+CF=CD.
②如圖3,若點D在邊BC的延長線上,線段CE、CF、CD之間的關(guān)系為 CF-CE=CDCF-CE=CD.(直接寫出結(jié)論)
(2)如圖4,等腰△ABC中,120°<∠BAC<180°,AB=AC,AD⊥BC,且交BC于點D,以AC為邊作等邊△ACE,直線BE交直線AD于點F,連接FC交AE于點M,寫出FE、FA、FC之間的數(shù)量關(guān)系,并加以說明.
(3)如圖5,在△ABC中,∠ACB=90°,AC=BC=8,點D是BC的中點,點P是AC邊上的一個動點,連接PD,以PD為邊在PD的下方作等邊三角形PDQ,連接CQ,則CQ是否有最小值,如有,求出它的最小值;沒有,請說明理由.
【考點】三角形綜合題.
【答案】CF-CE=CD
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/10/2 3:0:2組卷:762引用:2難度:0.5
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點,E、F分別是AB、AC邊上的點,且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:184引用:3難度:0.2 -
2.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點P從點A出發(fā),在線段AD上,以每秒1個單位的速度向點D運動:動點Q從點C出發(fā),在線段BC上,以每秒2個單位的速度向點B運動,點P、Q同時出發(fā),當其中一個點到達終點時,另一個點隨之停止運動,設(shè)運動時間為t(秒).
(1)當t=秒時,PQ平分線段BD;
(2)當t=秒時,PQ⊥x軸;
(3)當時,求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:143引用:3難度:0.1 -
3.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點F在BC上,點A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點F順時針旋轉(zhuǎn)(當點D落在射線FB上時停止旋轉(zhuǎn)).
(1)當∠AFD=°時,DF∥AC;當∠AFD=°時,DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點記為P,如圖2,若△AFP有兩個內(nèi)角相等,求∠APD的度數(shù);
(3)當邊DE與邊AB、BC分別交于點M、N時,如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1692引用:10難度:0.1