已知函數(shù)f(x)=log12(2sinx+1) -3.
(1)求f(x)的定義域;
(2)若x∈[0,π6],求f(x)的值域;
(3)設(shè)a∈R,函數(shù)g(x)=x2-3a2x-2a,x∈[0,1],若對于任意x1∈[0,π6],總存在唯一的x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.
f
(
x
)
=
lo
g
1
2
(
2
sinx
+
1
)
-
3
x
∈
[
0
,
π
6
]
x
1
∈
[
0
,
π
6
]
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:134引用:6難度:0.6
相似題
-
1.已知函數(shù)f(x)=cos2x+asinx-1,若不等式|f(x)|≤1任意的x∈[0,π]恒成立,則實數(shù)a的取值范圍為 .
發(fā)布:2024/12/9 7:30:1組卷:206引用:4難度:0.5 -
2.已知函數(shù)
.f(x)=4sin2(π4+x2)sinx+(cosx+sinx)(cosx-sinx)-1
(1)求f(x)的對稱中心;
(2)設(shè)常數(shù)ω>0,若函數(shù)f(ωx)在區(qū)間上是增函數(shù),求ω的取值范圍;[-π2,2π3]
(3)若函數(shù)在區(qū)間g(x)=12[f(2x)+af(x)-af(π2-x)-a]-1上的最大值為2,求a的值.[-π4,π2]發(fā)布:2024/12/1 14:0:1組卷:433引用:5難度:0.5 -
3.若
,則f(x)在f(x)=sin2x+3sinxcosx-12上的最大值為( ?。?/h2>[π6,23π]發(fā)布:2024/12/17 19:30:3組卷:12引用:1難度:0.7
把好題分享給你的好友吧~~