在三棱柱ABC-A1B1C1中,側(cè)面正方形BB1C1C的中心為點M,A1M⊥平面BB1C1C,且BB1=2,AB=3,點E滿足A1E=λA1C1(0≤λ≤1).
(1)若A1B∥平面B1CE,求λ的值;
(2)求點E到平面ABC的距離;
(3)若平面ABC與平面B1CE所成角的正弦值為255,求λ的值.
B
B
1
=
2
,
AB
=
3
A
1
E
=
λ
A
1
C
1
(
0
≤
λ
≤
1
)
2
5
5
【考點】二面角的平面角及求法;點、線、面間的距離計算.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:160引用:4難度:0.4
相似題
-
1.正四棱錐P-ABCD,底面四邊形ABCD為邊長為2的正方形,
,其內(nèi)切球為球G,平面α過AD與棱PB,PC分別交于點M,N,且與平面ABCD所成二面角為30°,則平面α截球G所得的圖形的面積為 .PA=5發(fā)布:2024/12/5 8:30:6組卷:159引用:4難度:0.5 -
2.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是等邊三角形,CD⊥平面PAD,E,F(xiàn),G,O分別是PC,PD,BC,AD的中點.
(1)求證:PO⊥平面ABCD;
(2)求平面EFG與平面ABCD的夾角的大?。?br />(3)線段PA上是否存在點M,使得直線GM與平面EFG所成角為,若存在,求線段PM的長;若不存在,說明理由.π6發(fā)布:2024/12/7 16:30:5組卷:518引用:8難度:0.6 -
3.如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=4,AB=3,BC=5,點D是線段BC的中點.
(1)求證:AB⊥A1C;
(2)求二面角D-CA1-A的余弦值.發(fā)布:2024/11/30 13:0:1組卷:321引用:5難度:0.6
把好題分享給你的好友吧~~