在平面直角坐標(biāo)系xOy中,曲線C1方程為:x=t+1t y=2(t-1t)
(t為參數(shù)),以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為:ρ-1sinθ-3cosθ=0.
(1)求曲線C2的直角坐標(biāo)方程;
(2)已知點(diǎn)P、點(diǎn)Q分別是曲線C1和C2上的動點(diǎn),求|PQ|的最小值以及取得最小值時P點(diǎn)坐標(biāo).
x = t + 1 t |
y = 2 ( t - 1 t ) |
ρ
-
1
sinθ
-
3
cosθ
=
0
【考點(diǎn)】參數(shù)方程化成普通方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/6 8:0:9組卷:11引用:1難度:0.5
相似題
-
1.直線l的極坐標(biāo)方程為θ=α(ρ∈R,ρ≠0),其中α∈[0,π),曲線C1的參數(shù)方程為
(t為參數(shù)),圓C2的普通方程為x2+y2+2x=costy=1+sintx=0.3
(1)求C1,C2的極坐標(biāo)方程;
(2)若l與C1交于點(diǎn)A,l與C2交于點(diǎn)B,當(dāng)|AB|=2時,求△ABC2的面積.發(fā)布:2024/10/20 2:0:1組卷:12引用:1難度:0.5 -
2.已知曲線的參數(shù)方程
(θ為參數(shù)),當(dāng)參數(shù)x=2sinθy=cos2θ時,對應(yīng)的點(diǎn)的坐標(biāo)是( ?。?/h2>θ=π6A.(-1, )12B.( ,3)12C.(1, )12D.( ,3)32發(fā)布:2024/11/29 5:0:2組卷:7引用:1難度:0.7 -
3.將參數(shù)方程
(但為參數(shù))化為普通方程為( )x=2+sinθy=sinθA.y=x-2 B.y=x+2 C.y=x-2(1≤x≤3) D.y=x+2(0≤y≤1) 發(fā)布:2024/11/29 5:0:2組卷:9引用:1難度:0.7
把好題分享給你的好友吧~~