已知奇函數f(x)在(-∞,+∞)單調遞增,f(1)=2,若0<f(m)<2,則( ?。?/h1>
lo g m ( 1 + m ) > lo g m ( 1 + m 2 ) | |
( 1 - m ) 1 3 > ( 1 - m ) 1 2 |
【考點】奇偶性與單調性的綜合.
【答案】C
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:1難度:0.6
相似題
-
1.設f(x)是連續(xù)的偶函數,且當x>0時,f(x)是單調函數,則滿足f(x)=f(
)的所有x之和為( ?。?/h2>x+3x+4A.-8 B.-3 C.8 D.3 發(fā)布:2024/12/29 13:30:1組卷:119引用:8難度:0.7 -
2.下列函數中,既是偶函數,又在區(qū)間(0,1)上單調遞增的函數是( ?。?/h2>
A.y=x?|x| B.y=sinx C. y=(12)|x|D.y=-cos(π?x) 發(fā)布:2024/12/29 4:0:1組卷:30引用:2難度:0.9 -
3.已知函數f(x)是定義在R上的奇函數,當x∈(0,+∞)時,f(x)=2log2(2x+1)-1,則下列說法正確的是( )
A. f(-72)=5B.當x∈(-∞,0)時,f(x)=1-2log2(-2x+1) C.f(x)在R上單調遞增 D.不等式f(x)≥1的解集為 [12,+∞)發(fā)布:2024/12/28 23:30:2組卷:63難度:0.6
把好題分享給你的好友吧~~