閱讀材料:若m2-2mn+2n2-4n+4=0,求m,n的值.
解:∵m2-2mn+2n2-4n+4=0,∴(m2-2mn+n2)+(n2-4n+4)=0,
∴(m-n)2+(n-2)2=0,∴(m-n)2=0,(n-2)2=0,∴n=2,m=2.
根據(jù)你的觀察,探究下面的問題:
(1)a2+b2+6a-2b+10=0,則a=-3-3,b=11.
(2)已知x2+2y2-2xy+8y+16=0,求xy的值.
(3)已知△ABC的三邊長a、b、c都是正整數(shù),且滿足2a2+b2-4a-8b+18=0,求△ABC的周長.
【答案】-3;1
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/7/11 8:0:9組卷:2991引用:15難度:0.5
相似題
-
1.如果一個(gè)四位數(shù)M的百位數(shù)字和千位數(shù)字的差恰好是個(gè)位數(shù)字與十位數(shù)字的差的兩倍,則這個(gè)四位數(shù)M稱作“鳳中數(shù)”.例如:M=2456,∵4-2=2×(6-5),∴2456是“鳳中數(shù)”.若一個(gè)“鳳中數(shù)”的千位數(shù)字為a,百位數(shù)字為b,十位數(shù)字為c,個(gè)位數(shù)字為d,且滿足(2≤a≤b<c≤d≤9),記
,當(dāng)G(M)是整數(shù)時(shí),則滿足條件的M的最大值為 .G(M)=49ac-2a+2d+23b-624發(fā)布:2024/12/18 4:30:1組卷:173引用:3難度:0.7 -
2.已知x-y=
,xy=12,則x2y-xy2的值是( )43發(fā)布:2024/12/23 11:30:2組卷:435引用:2難度:0.7 -
3.如果一個(gè)正整數(shù)能表示為兩個(gè)連續(xù)的偶數(shù)的平方差,那么稱這個(gè)正整數(shù)為“神秘?cái)?shù)”.如果4=22-02,12=42-22,20=62-42,因此4,12,20都是“神秘?cái)?shù)”.
(1)28和2020這兩個(gè)數(shù)是“神秘?cái)?shù)”嗎?為什么?
(2)設(shè)兩個(gè)連續(xù)偶數(shù)為2k和2k+2(其中k取非負(fù)整數(shù)),由這兩個(gè)連續(xù)偶數(shù)構(gòu)造的“神秘?cái)?shù)”是4的倍數(shù)嗎?為什么?
(3)兩個(gè)連續(xù)的奇數(shù)的平方差(取正整數(shù))是“神秘?cái)?shù)”嗎?為什么?發(fā)布:2024/12/20 7:30:1組卷:336引用:5難度:0.9
把好題分享給你的好友吧~~