問題背景:如圖1,等腰△ABC中,AB=AC,∠BAC=120°,作AD⊥BC于點D,則D為BC的中點,∠BAD=12∠BAC=60°,于是BCAB=2BDAB=3;
遷移應(yīng)用:如圖2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三點在同一條直線上,連接BD.
①求證:△ADB≌△AEC;
②請直接寫出線段AD,BD,CD之間的等量關(guān)系式;
拓展延伸:如圖3,在菱形ABCD中,∠ABC=120°,在∠ABC內(nèi)作射線BM,作點C關(guān)于BM的對稱點E,連接AE并延長交BM于點F,連接CE,CF.
①證明△CEF是等邊三角形;
②若AE=5,CE=2,求BF的長.
1
2
BC
AB
2
BD
AB
3
【考點】三角形綜合題;全等三角形的判定與性質(zhì).
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/4 13:0:2組卷:4567引用:11難度:0.3
相似題
-
1.為了探索代數(shù)式
x2+1的最小值,小張巧妙的運用了數(shù)學(xué)思想,具體方法是這樣的:+(8-x)2+25
如圖,C為線段BD上一動點,分別過點B,D作AB⊥BD,ED⊥BD,連接AC,EC,已知AB=1,DE=5,BD=8,設(shè)BC=x,則AC=,CE=x2+1,則問題即轉(zhuǎn)化成求AC+CE的最小值.(8-x)2+25
(1)我們知道當(dāng)A,C,E在同一直線上時,AC+CE的值最小,于是可求得x2+1的最小值等于;+(8-x)2+25
(2)題中“小張巧妙的運用了數(shù)學(xué)思想”是指哪種主要的數(shù)學(xué)思想?(選填:函數(shù)思想,分類討論思想,類比思想,數(shù)形結(jié)合思想)
(3)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式x2+4的最小值.+(12-x)2+9發(fā)布:2024/11/23 8:0:1組卷:440引用:2難度:0.3 -
2.(1)問題發(fā)現(xiàn):小紅在數(shù)學(xué)課上學(xué)習(xí)了外角的相關(guān)知識后,她很容易地證明了三角形外角的性質(zhì),即三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,于是,愛思考的小紅在想,四邊形的外角是否也具有類似的性質(zhì)呢?
如圖①,∠1,∠2是四邊形ABCD的兩個外角.
∵四邊形ABCD的內(nèi)角和是360°,
∴∠A+∠C+(∠3+∠4)=360°,
又∵∠1+∠3+∠2+∠4=360°,
由此可得∠1,∠2與∠A,∠D的數(shù)量關(guān)系是 ;
(2)總結(jié)歸納:如果我們把∠1,∠2稱為四邊形的外角,那么請你用文字描述上述的關(guān)系式;
(3)知識應(yīng)用:如圖②,已知四邊形ABCD,AE,DE分別是其外角∠NAD和∠MDA的平分線,若∠B+∠C=230°,求∠E的度數(shù);
(4)拓展提升:如圖③,四邊形ABCD中,∠A=∠C=90°,∠CDN和∠CBM是它的兩個外角,且∠CDP=∠CDN,∠CBP=13∠CBM,求∠P的度數(shù).13發(fā)布:2024/11/22 8:0:1組卷:93引用:1難度:0.5 -
3.如圖,平面直角坐標(biāo)系中,點A,C分別在y軸,x軸的負(fù)半軸上,∠ACB=90°,且AC=BC.BC交y軸于點D、AB交x軸于點E,若AD平分∠BAC,則線段AD,OC,OD之間的數(shù)量關(guān)系是 .
發(fā)布:2024/12/13 20:30:3組卷:344引用:2難度:0.3
把好題分享給你的好友吧~~