當(dāng)前位置:
試題詳情
各項均為正數(shù)的數(shù)列{an}的前n項和為Sn,且滿足a2=4,an+12=6Sn+9n+1,n∈N*.各項均為正數(shù)的等比數(shù)列{bn}滿足b1=a1,b3=a2.
(1)求證{an}為等差數(shù)列并求數(shù)列{an}、{bn}的通項公式;
(2)若cn=an?bn,數(shù)列{cn}的前n項和Tn.
①求Tn;
②若對任意n≥2,n∈N*,均有(Tn-5)m≥6n2-31n+35恒成立,求實數(shù)m的取值范圍.
(
T
n
-
5
)
m
≥
6
n
2
-
31
n
+
35
【考點】數(shù)列與不等式的綜合;數(shù)列的求和.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:812引用:6難度:0.3
相似題
-
1.古印度數(shù)學(xué)家婆什伽羅在《麗拉沃蒂》一書中提出如下問題:某人給一個人布施,初日施2子安貝(古印度貨幣單位),以后逐日倍增,問一月共施幾何?在這個問題中,以一個月31天計算,記此人第n日布施了an子安貝(其中1≤n≤31,n∈N*),數(shù)列{an}的前n項和為Sn.若關(guān)于n的不等式
恒成立,則實數(shù)t的取值范圍為( ?。?/h2>Sn-62<a2n+1-tan+1發(fā)布:2024/12/9 14:30:1組卷:52引用:3難度:0.6 -
2.已知等比數(shù)列{xn}的各項為不等于1的正數(shù),數(shù)列{yn}滿足
(a>0,且a≠1),設(shè)y3=18,y6=12.ynlogaxn=2
(1)數(shù)列{yn}的前多少項和最大,最大值是多少?
(2)試判斷是否存在自然數(shù)M,使得n>M時,xn>1恒成立,若存在,求出最小的自然數(shù)M,若不存在,請說明理由.發(fā)布:2025/1/14 8:0:1組卷:11引用:1難度:0.1 -
3.已知等比數(shù)列{an}的前n項和為Sn,
,則使得不等式Sn+1+1=4an(n∈N*)成立的正整數(shù)m的最大值為( )am+am+1+…+am+k-am+1Sk<2023(k∈N*)發(fā)布:2024/12/7 11:0:2組卷:203引用:4難度:0.5