當(dāng)前位置:
試題詳情
閱讀理解:對(duì)于二次三項(xiàng)式x2+2ax+a2可以直接用公式法分解為(x+a)2的形式,但對(duì)于二次三項(xiàng)式x2+2ax-8a2,就不能直接用公式法了,我們可以在二次三項(xiàng)式x2+2ax-8a2中先加上一項(xiàng)a2,使其成為完全
平方式,再減去a2這項(xiàng),使整個(gè)式子的值不變.于是有:x2+2ax-8a2
=x2+2ax-8a2+a2-a2
=(x2+2ax+a2)-8a2-a2
=(x+a)2-9a2
=[(x+a)+3a][(x+a)-3a]
=(x+4a)(x-2a)像這樣把二次三項(xiàng)式分解因式的方法叫做添(拆)項(xiàng)法.
(1)請(qǐng)認(rèn)真閱讀以上的添(拆)項(xiàng)法,并用上述方法將二次三項(xiàng)式:x2+2ax-3a2分解因式
(2)直接填空:請(qǐng)用上述的添(拆)項(xiàng)法將方程的x2-4xy+3y2=0化為(x-y-y)?(x-3y-3y)=0
并直接寫出y與x的關(guān)系式.(滿足xy≠0,且x≠y)
(3)先化簡xy-yx-x2+y2xy,再利用(2)中y與x的關(guān)系式求值.
x
y
-
y
x
-
x
2
+
y
2
xy
【考點(diǎn)】因式分解的應(yīng)用.
【答案】-y;-3y
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:1166引用:3難度:0.3
相似題
-
1.閱讀下列題目的解題過程:
已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
解:∵a2c2-b2c2=a4-b4(A)
∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
∴c2=a2+b2(C)
∴△ABC是直角三角形
問:(1)上述解題過程,從哪一步開始出現(xiàn)錯(cuò)誤?請(qǐng)寫出該步的代號(hào):;
(2)錯(cuò)誤的原因?yàn)椋?!--BA-->;
(3)本題正確的結(jié)論為:.發(fā)布:2024/12/23 18:0:1組卷:2532引用:25難度:0.6 -
2.若a是整數(shù),則a2+a一定能被下列哪個(gè)數(shù)整除( )
發(fā)布:2024/12/24 6:30:3組卷:390引用:7難度:0.6 -
3.閱讀理解:
能被7(或11或13)整除的特征:如果一個(gè)自然數(shù)末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是7(或11或13)的倍數(shù),則這個(gè)數(shù)就能被7(或11或13)整除.
如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
(1)用材料中的方法驗(yàn)證67822615是7的倍數(shù)(寫明驗(yàn)證過程);
(2)若對(duì)任意一個(gè)七位數(shù),末三位所表示的數(shù)與末三位以前的數(shù)字所表示的數(shù)之差(大數(shù)減小數(shù))是11的倍數(shù),證明這個(gè)七位數(shù)一定能被11整除.發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4