試卷征集
加入會員
操作視頻

探究問題.
(1)方法感悟:
如圖①,在正方形ABCD中,點E,F(xiàn)分別為DC,BC邊上的點,且滿足∠EAF=45°,連接EF,求證:DE+BF=EF.
菁優(yōu)網(wǎng)
感悟解題方法,并完成下列填空:
將△ADE繞點A順時針旋轉90°得到△ABG,此時AB與AD重合,由旋轉可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,點G,B,F(xiàn)在同一條直線上.
∵∠EAF=45°,
∴∠2+∠3=
EAF
EAF

∵∠1=∠2,
∴∠1+∠3=45°,即∠GAF=∠EAF.
又AG=AE,AF=AF,
△GAE≌
△EAF
△EAF

∴GF=EF,故DE+BF=EF.
(2)方法遷移:
如圖②,將Rt△ABC沿斜邊翻折得到△ADC,點E,F(xiàn)分別為DC,BC邊上的點,且∠EAF=
1
2
∠DAB.試猜想DE,BF,EF之間有何數(shù)量關系,并證明你的猜想.
(3)問題拓展:
如圖③,在四邊形ABCD中,AB=AD,E,F(xiàn)分別為DC,BC上的點,滿足∠EAF=
1
2
∠DAB,試猜想當∠B與∠D滿足什么關系時,可使得DE+BF=EF.請直接寫出你的猜想(不必說明理由).

【考點】四邊形綜合題
【答案】EAF;△EAF
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:97引用:1難度:0.1
相似題
  • 菁優(yōu)網(wǎng)1.如圖,∠BOD=45°,BO=DO,點A在OB上,四邊形ABCD是矩形,連接AC,BD交于點E,連接OE交AD于點F.下列4個判斷:①OE⊥BD;②∠ADB=30°;③DF=
    2
    AF;④若點G是線段OF的中點,則△AEG為等腰直角三角形,其中,判斷正確的是
    .(填序號)

    發(fā)布:2024/12/23 18:30:1組卷:1464引用:7難度:0.3
  • 2.如圖,點P是正方形ABCD內的一點,連接CP,將線段CP繞點C順時針旋轉90°,得到線段CQ,連接BP,DQ.
    (1)如圖a,求證:△BCP≌△DCQ;
    (2)如圖,延長BP交直線DQ于點E.
    ①如圖b,求證:BE⊥DQ;
    ②如圖c,若△BCP為等邊三角形,判斷△DEP的形狀,并說明理由.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/12/23 18:0:1組卷:2030引用:13難度:0.1
  • 3.四邊形ABCD是矩形,點E是射線BC上一點,連接AC,DE.
    (1)如圖1,點E在邊BC的延長線上,BE=AC,若∠ACB=40°,求∠E的度數(shù);
    (2)如圖2,點E在邊BC的延長線上,BE=AC,若M是DE的中點,連接AM,CM,求證:AM⊥MC;
    (3)如圖3,點E在邊BC上,射線AE交射線DC于點F,∠AED=2∠AEB,AF=4
    5
    ,AB=4,則CE=
    .(直接寫出結果)
    菁優(yōu)網(wǎng)

    發(fā)布:2024/12/23 18:30:1組卷:1404引用:10難度:0.4
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正