已知遞增數(shù)列{an}的前n項和為Sn,且2Sn=an2+n,數(shù)列{bn}滿足b1=a1,b4=4a2,bnbn+2=b2n+1,n∈N*.
(1)求數(shù)列{an}和{bn}的通項公式;
(2)記cn=(6n-7)bn8Sn-3,n為奇數(shù) log2bn+1,n為偶數(shù)
,數(shù)列{cn}的前2n項和為T2n,若不等式(-1)nλ+4n4n+1<T2n對一切n∈N*恒成立,求λ的取值范圍.
2
S
n
=
a
n
2
+
n
b
n
b
n
+
2
=
b
2
n
+
1
,
n
∈
N
*
c
n
=
( 6 n - 7 ) b n 8 S n - 3 , n 為奇數(shù) |
lo g 2 b n + 1 , n 為偶數(shù) |
(
-
1
)
n
λ
+
4
n
4
n
+
1
<
T
2
n
【考點】數(shù)列求和的其他方法.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:268引用:3難度:0.3
相似題
-
1.已知{an}為單調(diào)遞增的等比數(shù)列,bn=
,記Sn,Tn分別是數(shù)列{an},{bn}的前n項和,S3=7,T3=1.an-2n,n為奇數(shù)2an,n為偶數(shù)
(1)求{an}的通項公式;
(2)證明:當(dāng)n>5時,Tn>Sn.發(fā)布:2024/10/9 11:0:2組卷:45引用:3難度:0.5 -
2.數(shù)列{an}滿足a1=0,a2=1,an=
,則數(shù)列{an}的前10項和為( ?。?/h2>2+an-2,n≥3,n為奇數(shù)2an-2,n≥3,n為偶數(shù)發(fā)布:2024/11/10 4:0:2組卷:189引用:4難度:0.7 -
3.任取一個正整數(shù),若是奇數(shù),就將該數(shù)乘3再加上1;若是偶數(shù),就將該數(shù)除以2.反復(fù)進(jìn)行上述兩種運算,經(jīng)過有限次步驟后,必進(jìn)入循環(huán)圈1→4→2→1.這就是數(shù)學(xué)史上著名的“冰雹猜想”(又稱“角谷猜想”等).如取正整數(shù)m=6,根據(jù)上述運算法則得出6→3→10→5→16→8→4→2→1,共需經(jīng)過8個步驟變成1(簡稱為8步“雹程”).現(xiàn)給出冰雹猜想的遞推關(guān)系如下:已知數(shù)列{an}滿足:a1=m(m為正整數(shù)),
當(dāng)m=3時,a1+a2+a3+…+a100=.an+1=an2,當(dāng)an為偶數(shù)時,3an+1,當(dāng)an為奇數(shù)時.發(fā)布:2024/10/26 17:0:2組卷:71引用:3難度:0.5