【問(wèn)題提出】用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?
【問(wèn)題探究】不妨假設(shè)能搭成m種不同的等腰三角形,為探究m與n之間的關(guān)系,我們可以先從特殊入手,通過(guò)試驗(yàn)、觀察、類比、最后歸納、猜測(cè)得出結(jié)論.
【探究一】
(1)用3根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
此時(shí),顯然能搭成一種等腰三角形.
所以,當(dāng)n=3時(shí),m=1.
(2)用4根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
只可分成1根木棒、1根木棒和2根木棒這一種情況,不能搭成三角形.
所以,當(dāng)n=4時(shí),m=0.
(3)用5根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
若分成1根木棒、1根木棒和3根木棒,則不能搭成三角形.
若分成2根木棒、2根木棒和1根木棒,則能搭成一種等腰三角形.
所以,當(dāng)n=5時(shí),m=1.
(4)用6根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
若分成1根木棒、1根木棒和4根木棒,則不能搭成三角形.
若分成2根木棒、2根木棒和2根木棒,則能搭成一種等腰三角形.
所以,當(dāng)n=6時(shí),m=1.
綜上所述,可得:表①
n | 3 | 4 | 5 | 6 |
m | 1 | 0 | 1 | 1 |
(1)用7根相同的木棒搭一個(gè)三角形,能搭成多少種不同的三角形?
(仿照上述探究方法,寫出解答過(guò)程,并將結(jié)果填在表②中)
(2)用8根、9根、10根相同的木棒搭一個(gè)三角形,能搭成多少種不同的等腰三角形?
(只需把結(jié)果填在表②中)
表②
n | 7 | 8 | 9 | 10 |
m | 2 2 | 1 1 | 2 2 | 2 2 |
【問(wèn)題解決】:用n根相同的木棒搭一個(gè)三角形(木棒無(wú)剩余),能搭成多少種不同的等腰三角形?(設(shè)n分別等于4k-1,4k,4k+1,4k+2,其中k是正整數(shù),把結(jié)果填在表③中)
表③
n | 4k-1 | 4k | 4k+1 | 4k+2 |
m | k k | k-1 k-1 | k k | k k |
672
672
根木棒.(只填結(jié)果)【答案】2;1;2;2;k;k-1;k;k;672
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:771引用:28難度:0.3
相似題
-
1.我們把能二等分多邊形面積的直線稱為多邊形的“好線”,請(qǐng)用無(wú)刻度的直尺作出圖(1)、圖(2)的“好線”.其中圖(1)是一個(gè)平行四邊形,圖(2)由一個(gè)平行四邊形和一個(gè)正方形組成.(保留作圖痕跡,不寫作法)
發(fā)布:2024/12/23 13:30:1組卷:203引用:7難度:0.7 -
2.在3×3的正方形格點(diǎn)圖中有格點(diǎn)△ABC,請(qǐng)?jiān)谙聢D1~3中分別按下列要求畫出一個(gè)不同于△ABC的格點(diǎn)三角形.
(1)在圖1中畫出的格點(diǎn)△ABD,且與△ABC面積相等.
(2)在圖2中畫出的格點(diǎn)△ACE,且與△ABC面積相等.
(3)在圖3中畫出的格點(diǎn)△BCF,且是一個(gè)軸對(duì)稱圖形.發(fā)布:2024/12/23 16:30:2組卷:46引用:3難度:0.6 -
3.如圖,網(wǎng)格中的每個(gè)小正方形的邊長(zhǎng)都是1,線段交點(diǎn)稱作格點(diǎn).
(1)畫出△ABC的高CD;
(2)直接寫出△ABC的面積是;
(3)在線段AB上找一點(diǎn)E(點(diǎn)E在格點(diǎn)上),連結(jié)線段CE,使得線段CE將圖中△ABC分成面積相等的兩部分.發(fā)布:2024/12/23 16:0:2組卷:63引用:3難度:0.6