(1)觀察下列多面體,并把下表補(bǔ)充完整.
名稱 | 三棱柱 | 四棱柱 | 五棱柱 | 六棱柱 |
圖形 | ||||
頂點(diǎn)數(shù)a | 6 |
8 8
|
10 | 12 |
棱數(shù)b | 9 | 12 | 15 |
18 18
|
面數(shù)c | 5 | 6 |
7 7
|
8 |
【考點(diǎn)】歐拉公式.
【答案】8;18;7
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/24 15:45:42組卷:90引用:4難度:0.6
相似題
-
1.十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式.
請你觀察下列幾種簡單多面體模型,解答下列問題:
(1)根據(jù)上面多面體模型,完成表格中的空格:多面體 頂點(diǎn)數(shù)(V) 面數(shù)(F) 棱數(shù)(E) 四面體 4 4 長方體 8 6 12 正八面體 8 12 正十二面體 20 12 30
(3)一個多面體的面數(shù)與頂點(diǎn)數(shù)相同,且有12條棱,則這個多面體的面數(shù)是.發(fā)布:2024/9/15 7:0:13組卷:358引用:6難度:0.6 -
2.十八世紀(jì)瑞士數(shù)學(xué)家歐拉證明了簡單多面體中頂點(diǎn)數(shù)(V)、面數(shù)(F)、棱數(shù)(E)之間存在的一個有趣的關(guān)系式,被稱為歐拉公式.請你觀察下列幾種簡單多面體模型,解答下列問題:
(1)根據(jù)上面多面體模型,完成表格中的空格:多面體 頂點(diǎn)數(shù)(V) 面數(shù)(F) 棱數(shù)(E) 四面體 長方體 正八面體 正十二面體
(2)一個多面體的面數(shù)比頂點(diǎn)數(shù)小8,且有30條棱,則這個多面體的面數(shù)是 .
(3)某個玻璃飾品的外形是簡單多面體,它的外表面是由三角形和八邊形兩種多邊形拼接而成,且有24個頂點(diǎn),每個頂點(diǎn)處都有3條棱,設(shè)該多面體外表面三角形的個數(shù)為x個,八邊形的個數(shù)為y個,求x+y的值.發(fā)布:2024/9/15 8:0:8組卷:524引用:4難度:0.5