在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C1,C2的極坐標(biāo)方程分別為ρ2=2ρcosθ+2,ρcos(θ+π3)=32.
(1)求曲線C1,C2的直角坐標(biāo)方程;
(2)若曲線C2與x軸交于點(diǎn)P,曲線C1和曲線C2的交點(diǎn)為A,B,求|PA||PB|+|PB||PA|的值.
ρcos
(
θ
+
π
3
)
=
3
2
|
PA
|
|
PB
|
+
|
PB
|
|
PA
|
【考點(diǎn)】簡(jiǎn)單曲線的極坐標(biāo)方程.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/8/27 2:0:8組卷:37引用:3難度:0.5
相似題
-
1.在直角坐標(biāo)系xOy中,直線l1的方程為y+4=0,直線l2的方程為x+4=0.以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓M的極坐標(biāo)方程為ρ2-2ρcosθ-4ρsinθ=11,點(diǎn)C的極坐標(biāo)為
.(42,5π4)
(1)求點(diǎn)C的直角坐標(biāo)與圓M的直角坐標(biāo)方程(化為標(biāo)準(zhǔn)方程);
(2)若P為曲線M上任意一點(diǎn),過點(diǎn)P作直線l1的垂線,垂足為A,過點(diǎn)P作直線l2的垂線,垂足為B,求矩形PACB周長的最大值.發(fā)布:2024/9/21 0:0:8組卷:27引用:4難度:0.5 -
2.已知曲線C1的直角坐標(biāo)方程為x2-y2=4,以直角坐標(biāo)原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ=4cosθ.
(1)求C1的極坐標(biāo)方程和C2的直角坐標(biāo)方程;
(2)若曲線與曲線C1、曲線C2分別交于兩點(diǎn)A、B,點(diǎn)P(4,0),求△PAB的面積.θ=π6(ρ>0)發(fā)布:2024/10/23 5:0:2組卷:33引用:3難度:0.5 -
3.在直角坐標(biāo)系xOy中,直線l的直角坐標(biāo)方程為x-7y+8=0,曲線C的直角坐標(biāo)方程為x2+y2-4x=0,以坐標(biāo)原點(diǎn)為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系.
(1)求直線l和曲線C的極坐標(biāo)方程;
(2)設(shè)直線l交曲線C于兩點(diǎn)A,B,求∠AOB的大?。?/h2>發(fā)布:2024/9/13 0:0:8組卷:31引用:2難度:0.6
把好題分享給你的好友吧~~