試卷征集
加入會員
操作視頻

設A1,B1,C1是直線l1上的任意三點,A2,B2,C2是另一條直線l2上的任意三點,A1B2和B1A2交于L,A1C2和A2C1交于M,B1C2和B2C1交于N.求證:L,M,N三點共線.

【答案】見試題解答內容
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:246引用:1難度:0.1
相似題
  • 菁優(yōu)網(wǎng)1.如圖,△ABC的垂心為H,AD⊥BC于D,點E在△ABC的外接圓上,且滿足
    BE
    CE
    =
    AB
    AC
    ,直線ED交外接圓于點M.求證:∠AMH=90°.

    發(fā)布:2024/9/11 2:0:8組卷:1030引用:1難度:0.1
  • 2.設P,Q,R分別是△ABC的BC,CA,AB上的點.若
    BP
    PC
    ?
    CQ
    QA
    ?
    AR
    RB
    =
    1
    ,證明:AP,BQ,CR交于一點.

    發(fā)布:2024/4/20 14:35:0組卷:398引用:1難度:0.5
  • 3.梅涅勞斯(Menelaus)是古希臘數(shù)學家,他首先證明了梅涅勞斯定理,定理的內容是:如圖(1),如果一條直線與△ABC的三邊AB,BC,CA或它們的延長線交于F、D、E三點,那么一定有
    AF
    FB
    ?
    BD
    DC
    ?
    CE
    EA
    =1.
    下面是利用相似三角形的有關知識證明該定理的部分過程:
    證明:如圖(2),過點A作AG∥BC,交DF的延長線于點G,則有
    AF
    FB
    =
    AG
    BD
    ,
    CE
    EA
    =
    CD
    AG
    ,
    AF
    FB
    ?
    BD
    DC
    ?
    CE
    EA
    =
    AG
    BD
    ?
    BD
    DC
    ?
    CD
    AG
    =1.
    請用上述定理的證明方法解決以下問題:
    (1)如圖(3),△ABC三邊CB,AB,AC的延長線分別交直線l于X,Y,Z三點,證明:
    BX
    XC
    ?
    CZ
    ZA
    ?
    AY
    YB
    =1,請用上述定理的證明方法或結論解決以下問題:
    (2)如圖(4),等邊△ABC的邊長為3,點D為BC的中點,點F在AB上,且BF=2AF,CF與AD交于點E,試求AE的長.
    (3)如圖(5),△ABC的面積為4,F(xiàn)為AB中點,延長BC至D,使CD=BC,連接FD交AC于E,求四邊形BCEF的面積.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/10/1 11:0:2組卷:631引用:1難度:0.2
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網(wǎng) | 應用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經(jīng)營許可證出版物經(jīng)營許可證網(wǎng)站地圖本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正