試卷征集
加入會員
操作視頻

問題背景
折紙是一種將紙張折成各種不同形狀的藝術活動,折紙大約起源于公元1世紀或者2世紀時的中國,6世紀時傳入日本,再經由日本傳到全世界,折紙與自然科學結合在一起,不僅成為建筑學院的教具,還發(fā)展出了折紙幾何學,成為現代幾何學的一個分支.今天折紙被應用于世界各地,其中比較著名的是日本筑波大學的芳賀和夫發(fā)現的折紙幾何三定理,它已成為折紙幾何學的基本定理.
芳賀折紙第一定理的操作過程及內容如下:
第一步:如圖1,將正方形紙片ABCD對折,使點A與點D重合,點B與點C重合.再將正方形ABCD展開,得到折痕EF;
第二步:將正方形紙片的右下角向上翻折,使點C與點E重合,邊BC翻折至B'E的位置,得到折痕MN,B'E與AB交于點P.
則點P為AB的三等分點,即AP:PB=2:1.
問題解決
如圖1,若正方形ABCD的邊長是2.
菁優(yōu)網
(1)CM的長為
5
4
5
4
;
(2)請通過計算AP的長度,說明點P是AB的三等分點.
類比探究
(3)將長方形紙片ABCD(AB>BC)按問題背景中的操作過程進行折疊,如圖2,若折出的點P也為AB的三等分點,請直接寫出
AB
AC
的值.

【考點】四邊形綜合題
【答案】
5
4
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/23 11:0:11組卷:316難度:0.2
相似題
  • 菁優(yōu)網1.如圖,四邊形ABCD中,AD=CD,AB=CB.我們把這種兩組鄰邊分別相等的凸四邊形叫做箏形.AC,BD叫做箏形的對角線.請你通過觀察、測量、折紙等方法進行探究,并回答以下問題:
    (1)判斷下列結論是否正確;
    a.∠DAB=∠DCB;

    b.∠ABC=∠ADC;

    c.BD分別平分∠ABC和∠ADC

    d.箏形是軸對稱圖形,它有兩條對稱軸.

    (2)請你選擇下列問題中的一個進行證明:
    a.從(1)中選擇一個正確的結論進行證明;
    b.通過探究,再找到一條箏形的性質,并進行證明.

    發(fā)布:2024/11/7 8:0:2組卷:108引用:2難度:0.3
  • 菁優(yōu)網2.有這樣一個問題:如圖,在四邊形ABCD中,AB=AD,CB=CD,我們把這種兩組鄰邊分別相等的四邊形叫做箏形,請?zhí)骄抗~形的性質和判定方法.
    小南根據學習四邊形的經驗,對箏形的性質和判定方法進行了探究.
    下面是小南的探究過程:
    (1)由箏形的定義可知,箏形的邊的性質時:箏形的兩組鄰邊分別相等,關于箏形的角的性質,通過測量,折紙的方法,猜想:箏形有一組對角相等.
    請將下面證明此猜想的過程補充完整:
    已知:如圖,在箏形ABCD中,AB=AD,CB=CD.
    求證:

    由以上證明可得,箏形的角的性質是:箏形有一組對角相等.
    (2)連接箏形的兩條對角線,探究發(fā)現箏形的另一條性質:箏形的一條對角線平分另一條對角線,結合圖形,寫出箏形的其他性質(一條即可):

    (3)箏形的定義是判定一個四邊形為箏形的方法之一,試判斷命題“一組對角相等,一條對角線平分另一條對角線的四邊形是”是否成立?如果成立,請給出證明;如果不成立,請舉出一個反例,畫出圖形,并加以證明.

    發(fā)布:2024/11/7 8:0:2組卷:134難度:0.1
  • 3.從圖1的風箏圖形可以抽象出幾何圖形,我們把這種幾何圖形叫做“箏形”.具體定義如下:如圖2,在四邊形ABCD中,AB=AD,BC=DC,我們把這種兩組鄰邊分別相等的四邊形叫做“箏形”.
    菁優(yōu)網
    (1)結合圖3,通過觀察、測量,可以猜想“箏形”具有諸如“AC平分∠BAD和∠BCD”這樣的性質,請結合圖形,再寫出兩條“箏形”的性質:
    ;

    (2)從你寫出的兩條性質中,任選一條“箏形”的性質給出證明.

    發(fā)布:2024/11/7 8:0:2組卷:221引用:7難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應用名稱:菁優(yōu)網 | 應用版本:4.8.2  |  隱私協議      第三方SDK     用戶服務條款廣播電視節(jié)目制作經營許可證出版物經營許可證網站地圖本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正