試卷征集
加入會(huì)員
操作視頻

(1)證明推斷:如圖(1),在正方形ABCD中,點(diǎn)E,Q分別在邊BC,AB上,DQ⊥AE于點(diǎn)O,點(diǎn)G,F(xiàn)分別在邊CD,AB上,GF⊥AE.求證:AE=FG;
(2)類比探究:如圖(2),在矩形ABCD中,
BC
AB
=k(k為常數(shù)).將矩形ABCD沿GF折疊,使點(diǎn)A落在BC邊上的點(diǎn)E處,得到四邊形FEPG,EP交CD于點(diǎn)H,連接AE交GF于點(diǎn)O.試探究GF與AE之間的數(shù)量關(guān)系,并說(shuō)明理由;
(3)拓展應(yīng)用:在(2)的條件下,連接CP,當(dāng)時(shí)k=
3
4
,若tan∠CGP=
4
3
,GF=2
5
,求CP的長(zhǎng).
菁優(yōu)網(wǎng)

【考點(diǎn)】四邊形綜合題
【答案】見(jiàn)試題解答內(nèi)容
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書(shū)面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/4/20 14:35:0組卷:3006引用:12難度:0.4
相似題
  • 1.綜合與實(shí)踐:
    (1)某學(xué)習(xí)小組在探究三角形全等時(shí),發(fā)現(xiàn)了下面這種典型的基本圖形.如圖1.已知:在△ABC中.∠BAC=90°,AB=AC,直線l經(jīng)過(guò)點(diǎn)A,BD⊥直線l,CE⊥直線l,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
    (2)組員小劉對(duì)圖2(∠BAC=90°,AB=AC,直線l經(jīng)過(guò)點(diǎn)A,BD⊥直線l,CE⊥直線l,垂足分別為點(diǎn)D、E.)進(jìn)行了探究,他發(fā)現(xiàn)線段DE、BD、CE之間也存在著類似的數(shù)量關(guān)系,請(qǐng)你直接寫(xiě)出這個(gè)發(fā)現(xiàn).
    (3)數(shù)學(xué)老師贊賞了他們的探索精神,并鼓勵(lì)他們運(yùn)用這個(gè)知識(shí)來(lái)解決問(wèn)題:如圖3,已知△ABC,AH是BC邊上的高,AH=1.過(guò)△ABC的邊AB、AC向外作正方形ABDE和正方形ACFG,延長(zhǎng)HA交EG于點(diǎn)I,若AI=2,請(qǐng)直接寫(xiě)出△AEG的面積.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/10/25 8:0:2組卷:110引用:1難度:0.1
  • 2.已知,正六邊形ABCDEF,邊長(zhǎng)為6,G點(diǎn)以每秒為1的速度從A→B→C→D→E上運(yùn)動(dòng),不與E點(diǎn)重合,同時(shí),點(diǎn)H以同樣的速度從B→C→D→E→F上運(yùn)動(dòng),不與F點(diǎn)重合,連接GF、AH交于點(diǎn)I;
    (1)求∠E的度數(shù).
    (2)如圖1,IJ是∠FIH的角平分線,過(guò)F點(diǎn)作IJ的垂線,垂足為J,當(dāng)FI是∠AFJ的角平分線時(shí),求證AI=IJ.
    (3)如圖2,過(guò)B點(diǎn)作FG的平行線,交直線AH于點(diǎn)L,當(dāng)G在運(yùn)動(dòng)的過(guò)程中,寫(xiě)出FI、AL、AI之間的數(shù)量關(guān)系,并給出證明.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/10/25 6:0:3組卷:91引用:3難度:0.5
  • 3.華師版八年級(jí)下冊(cè)數(shù)學(xué)教材第121頁(yè)習(xí)題19.3第2小題及參考答案.
    菁優(yōu)網(wǎng)如圖,在正方形ABCD中,CE⊥DF.求證:CE=DF.
    證明:設(shè)CE與DF交于點(diǎn)O,
    ∵四邊形ABCD是正方形,
    ∴∠B=∠DCF=90°,BC=CD.
    ∴∠BCE+∠DCE=90°,
    ∵CE⊥DF,
    ∴∠COD=90°.
    ∴∠CDF+∠DCE=90°.
    ∵∠CDF=∠BCE,
    ∴△CBE≌△DFC.
    ∴CE=DF.
    某數(shù)學(xué)興趣小組在完成了以上解答后,決定對(duì)該問(wèn)題進(jìn)一步探究.
    【問(wèn)題探究】
    如圖1,在正方形ABCD中,點(diǎn)E、F、G、H分別在線段AB、BC、CD、DA上,且EG⊥FH.
    試猜想
    EG
    FH
    的值,并證明你的猜想.
    【知識(shí)遷移】
    如圖2,在矩形ABCD中,AB=a,BC=b,點(diǎn)E、F、G、H分別在線段AB、BC、CD、DA上,且EG⊥FH,則
    EG
    FH
    =

    【拓展應(yīng)用】
    如圖3,在四邊形ABCD中,∠DAB=90°,∠ABC=60°,AB=BC,點(diǎn)E、F分別在線段AB、AD上,且CE⊥BF,直接寫(xiě)出
    CE
    BF
    的值.
    菁優(yōu)網(wǎng)

    發(fā)布:2024/10/25 17:0:1組卷:231引用:1難度:0.2
小程序二維碼
把好題分享給你的好友吧~~
APP開(kāi)發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司 | 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:4.8.2  |  隱私協(xié)議      第三方SDK     用戶服務(wù)條款廣播電視節(jié)目制作經(jīng)營(yíng)許可證出版物經(jīng)營(yíng)許可證網(wǎng)站地圖本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正