探究式學(xué)習(xí)是新課程倡導(dǎo)的重要學(xué)習(xí)方法,某數(shù)學(xué)興趣小組擬做以下探究.
如圖,在△ABC中,BD、CE分別是AC、AB上的高,點(diǎn)G在直線CE上,CG=AB,點(diǎn)F在直線BD上,BF=AC,F(xiàn)N⊥BC于點(diǎn)N,GM⊥BC于點(diǎn)M.探究線段BC,F(xiàn)N,GM之間的數(shù)量關(guān)系.
(1)如圖①,當(dāng)△ABC是銳角三角形時(shí),線段BC,F(xiàn)N,GM之間的數(shù)量關(guān)系是 BC=GM+FNBC=GM+FN.
“善思小組”通過探究后發(fā)現(xiàn)解決此問題的方法:過點(diǎn)A作AP⊥BC于點(diǎn)P,利用全等三角形的性質(zhì)進(jìn)而得證.請你寫出證明過程.
下面是小強(qiáng)的部分證明過程,仔細(xì)閱讀并完成相應(yīng)的任務(wù).
證明:過點(diǎn)A作AP⊥BC于點(diǎn)P. ∴∠APB=90°. ∴∠BAP+∠ABP=90°. ∵CE⊥AB, ∴∠BCE+∠ABP=90°. ∴∠BAP=∠BCE. ∵GM⊥BC, ∴∠CMG=90°. |
∴∠APB=∠CMG=90°. 在△APB和△CMG中, ∵∠BAP=∠GCM, ∠APB=∠CMG,AB=CG, ∴△APB≌△CMG(AAS). ∴BP=GM. |
(2)通過類比、轉(zhuǎn)化、猜想,探究出:當(dāng)△ABC是鈍角三角形,且AB>AC時(shí),如圖②線段BC,F(xiàn)N,GM之間的數(shù)量關(guān)系是
BC=GM-FN
BC=GM-FN
;當(dāng)△ABC是鈍角三角形,且AB<AC時(shí),如圖③,線段BC,F(xiàn)N,GM之間的數(shù)量關(guān)系是 BC=FN-GM
BC=FN-GM
.(3)“智慧小組”繼續(xù)對上述問題進(jìn)行特殊化研究后,提出下面問題請你解答:
在(1)和(2)的條件下,若MN=2BC=8,CD:AD=1:3,則S△BCD=
3或6
3或6
.【考點(diǎn)】三角形綜合題.
【答案】BC=GM+FN;BC=GM-FN;BC=FN-GM;3或6
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/10/3 0:0:1組卷:63引用:1難度:0.4
相似題
-
1.已知直角△ABC,∠BAC=90°,D是斜邊BC的中點(diǎn),E、F分別是AB、AC邊上的點(diǎn),且DE⊥DF,連接EF.
(1)如圖1,求證:∠BED=∠AFD;
(2)如圖1,求證:BE2+CF2=EF2;
(3)如圖2,當(dāng)∠ABC=45°,若BE=4,CF=3,求△DEF的面積.發(fā)布:2024/12/23 14:0:1組卷:184引用:3難度:0.2 -
2.一副三角板如圖1擺放,∠C=∠DFE=90°,∠B=30°,∠E=45°,點(diǎn)F在BC上,點(diǎn)A在DF上,且AF平分∠CAB,現(xiàn)將三角板DFE繞點(diǎn)F順時(shí)針旋轉(zhuǎn)(當(dāng)點(diǎn)D落在射線FB上時(shí)停止旋轉(zhuǎn)).
(1)當(dāng)∠AFD=°時(shí),DF∥AC;當(dāng)∠AFD=°時(shí),DF⊥AB;
(2)在旋轉(zhuǎn)過程中,DF與AB的交點(diǎn)記為P,如圖2,若△AFP有兩個(gè)內(nèi)角相等,求∠APD的度數(shù);
(3)當(dāng)邊DE與邊AB、BC分別交于點(diǎn)M、N時(shí),如圖3,若∠AFM=2∠BMN,比較∠FMN與∠FNM的大小,并說明理由.發(fā)布:2024/12/23 18:30:1組卷:1692引用:10難度:0.1 -
3.已知A(0,4),B(-4,0),D(9,4),C(12,0),動點(diǎn)P從點(diǎn)A出發(fā),在線段AD上,以每秒1個(gè)單位的速度向點(diǎn)D運(yùn)動:動點(diǎn)Q從點(diǎn)C出發(fā),在線段BC上,以每秒2個(gè)單位的速度向點(diǎn)B運(yùn)動,點(diǎn)P、Q同時(shí)出發(fā),當(dāng)其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)隨之停止運(yùn)動,設(shè)運(yùn)動時(shí)間為t(秒).
(1)當(dāng)t=秒時(shí),PQ平分線段BD;
(2)當(dāng)t=秒時(shí),PQ⊥x軸;
(3)當(dāng)時(shí),求t的值.∠PQC=12∠D發(fā)布:2024/12/23 15:0:1組卷:143引用:3難度:0.1