已知:△ABC中,∠ACB=90°,AC=CB,D為直線BC上一動(dòng)點(diǎn),連接AD,在直線AC右側(cè)作AE⊥AD,且AE=AD.
(1)如圖1,當(dāng)點(diǎn)D在線段BC上時(shí),過點(diǎn)E作EH⊥AC于H,連接DE,求證:EH=AC;
(2)如圖2,當(dāng)點(diǎn)D在線段BC的延長線上時(shí),連接BE交CA的延長線于點(diǎn)M.求證:BM=EM;
(3)當(dāng)點(diǎn)D在直線CB上時(shí),連接BE交直線AC于M,若2AC=5CM,請求出S△ADBS△AEM的值.
S
△
ADB
S
△
AEM
【考點(diǎn)】三角形綜合題.
【答案】見試題解答內(nèi)容
【解答】
【點(diǎn)評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:2041引用:10難度:0.3
相似題
-
1.為了探索代數(shù)式
x2+1的最小值,小張巧妙的運(yùn)用了數(shù)學(xué)思想,具體方法是這樣的:+(8-x)2+25
如圖,C為線段BD上一動(dòng)點(diǎn),分別過點(diǎn)B,D作AB⊥BD,ED⊥BD,連接AC,EC,已知AB=1,DE=5,BD=8,設(shè)BC=x,則AC=,CE=x2+1,則問題即轉(zhuǎn)化成求AC+CE的最小值.(8-x)2+25
(1)我們知道當(dāng)A,C,E在同一直線上時(shí),AC+CE的值最小,于是可求得x2+1的最小值等于;+(8-x)2+25
(2)題中“小張巧妙的運(yùn)用了數(shù)學(xué)思想”是指哪種主要的數(shù)學(xué)思想?(選填:函數(shù)思想,分類討論思想,類比思想,數(shù)形結(jié)合思想)
(3)請你根據(jù)上述的方法和結(jié)論,試構(gòu)圖求出代數(shù)式x2+4的最小值.+(12-x)2+9發(fā)布:2024/11/23 8:0:1組卷:440引用:2難度:0.3 -
2.(1)問題發(fā)現(xiàn):小紅在數(shù)學(xué)課上學(xué)習(xí)了外角的相關(guān)知識(shí)后,她很容易地證明了三角形外角的性質(zhì),即三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和,于是,愛思考的小紅在想,四邊形的外角是否也具有類似的性質(zhì)呢?
如圖①,∠1,∠2是四邊形ABCD的兩個(gè)外角.
∵四邊形ABCD的內(nèi)角和是360°,
∴∠A+∠C+(∠3+∠4)=360°,
又∵∠1+∠3+∠2+∠4=360°,
由此可得∠1,∠2與∠A,∠D的數(shù)量關(guān)系是 ;
(2)總結(jié)歸納:如果我們把∠1,∠2稱為四邊形的外角,那么請你用文字描述上述的關(guān)系式;
(3)知識(shí)應(yīng)用:如圖②,已知四邊形ABCD,AE,DE分別是其外角∠NAD和∠MDA的平分線,若∠B+∠C=230°,求∠E的度數(shù);
(4)拓展提升:如圖③,四邊形ABCD中,∠A=∠C=90°,∠CDN和∠CBM是它的兩個(gè)外角,且∠CDP=∠CDN,∠CBP=13∠CBM,求∠P的度數(shù).13發(fā)布:2024/11/22 8:0:1組卷:93引用:1難度:0.5 -
3.如圖,平面直角坐標(biāo)系中,點(diǎn)A,C分別在y軸,x軸的負(fù)半軸上,∠ACB=90°,且AC=BC.BC交y軸于點(diǎn)D、AB交x軸于點(diǎn)E,若AD平分∠BAC,則線段AD,OC,OD之間的數(shù)量關(guān)系是 .
發(fā)布:2024/12/13 20:30:3組卷:344引用:2難度:0.3
把好題分享給你的好友吧~~