閱讀材料:《見微知著》談到,從一個簡單的經(jīng)典問題出發(fā),從特殊到一般,由簡單到復(fù)雜,從部分到整體,由低維到高維,知識與方法上的類比是探索發(fā)展的重要途徑,是思想閥門發(fā)現(xiàn)新問題、新結(jié)論的重要方法.
例如:已知xy=1,求11+x+11+y的值.
解:原式=xyxy+x+11+y=y1+y+11+y=y+1y+1=1.
問題解決:(1)已知xy=1.
①代數(shù)式11+x2+11+y2的值為 11;
②求證:11+x2023+11+y2023=1;
(2)若x滿足(2023-x)2+(2022-x)2=4047,求(2023-x)(2022-x)的值.
1
1
+
x
+
1
1
+
y
xy
xy
+
x
+
1
1
+
y
=
y
1
+
y
+
1
1
+
y
=
y
+
1
y
+
1
1
1
+
x
2
+
1
1
+
y
2
1
1
+
x
2023
+
1
1
+
y
2023
=
1
【答案】1
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/6/27 10:35:59組卷:382引用:1難度:0.5
把好題分享給你的好友吧~~