試卷征集
加入會員
操作視頻

在學習《完全平方公式》時,某數學學習小組發(fā)現:已知a+b=5,ab=3,可以在不求a、b的值的情況下,求出a2+b2的值.具體做法如下:
a2+b2=a2+b2+2ab-2ab=(a+b)2-2ab=52-2×3=19.
(1)若a+b=7,ab=6,則a2+b2=
37
37

(2)若m滿足(8-m)(m-3)=3,求(8-m)2+(m-3)2的值,同樣可以應用上述方法解決問題.具體操作如下:
解:設8-m=a,m-3=b,
則a+b=(8-m)+(m-3)=5,ab=(8-m)(m-3)=3,
所以(8-m)2+(m-3)2=a2+b2=(a+b)2-2ab=52-2×3=19.
請參照上述方法解決下列問題:若(3x-2)(10-3x)=6,求(3x-2)2+(10-3x)2的值;
(3)如圖,某校“園藝”社團在三面靠墻的空地上,用長12米的籬笆(不含墻AM,AD,DN)圍成一個長方形花圃ABCD,花圃ABCD的面積為20平方米,其中墻AD足夠長,墻AM⊥墻AD,墻DN⊥墻AD,AM=DN=1米.隨著學?!皥@藝”社團成員的增加,學校在花圃ABCD旁分別以AB,CD邊向外各擴建兩個正方形花圃,以BC邊向外擴建一個正方形花圃(如圖所示虛線區(qū)域部分),請問新擴建花圃的總面積為
116
116
平方米.

【答案】37;116
【解答】
【點評】
聲明:本試題解析著作權屬菁優(yōu)網所有,未經書面同意,不得復制發(fā)布。
發(fā)布:2024/8/8 8:0:9組卷:973引用:2難度:0.5
相似題
  • 1.閱讀下列題目的解題過程:
    已知a、b、c為△ABC的三邊長,且滿足a2c2-b2c2=a4-b4,試判斷△ABC的形狀.
    解:∵a2c2-b2c2=a4-b4(A)
    ∴c2(a2-b2)=(a2+b2)(a2-b2) (B)
    ∴c2=a2+b2(C)
    ∴△ABC是直角三角形
    問:(1)上述解題過程,從哪一步開始出現錯誤?請寫出該步的代號:
    ;
    (2)錯誤的原因為:
    ;
    (3)本題正確的結論為:

    發(fā)布:2024/12/23 18:0:1組卷:2517引用:25難度:0.6
  • 2.閱讀理解:
    能被7(或11或13)整除的特征:如果一個自然數末三位所表示的數與末三位以前的數字所表示的數之差(大數減小數)是7(或11或13)的倍數,則這個數就能被7(或11或13)整除.
    如:456533,533-456=77,77是7的11倍,所以,456533能被7整除.又如:345548214,345548-214=345334,345-334=11,11是11的1倍,所以,345548214能被11整除.
    (1)用材料中的方法驗證67822615是7的倍數(寫明驗證過程);
    (2)若對任意一個七位數,末三位所表示的數與末三位以前的數字所表示的數之差(大數減小數)是11的倍數,證明這個七位數一定能被11整除.

    發(fā)布:2025/1/5 8:0:1組卷:122引用:3難度:0.4
  • 3.若a是整數,則a2+a一定能被下列哪個數整除( ?。?/h2>

    發(fā)布:2024/12/24 6:30:3組卷:388引用:7難度:0.6
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正