試卷征集
加入會(huì)員
操作視頻

魏晉時(shí)期數(shù)學(xué)家劉徽(圖a)為研究球體的體積公式,創(chuàng)造了一個(gè)獨(dú)特的立體圖形“牟合方蓋”,它由完全相同的四個(gè)曲面構(gòu)成,相對(duì)的兩個(gè)曲面在同一圓柱的側(cè)面上.如圖,將兩個(gè)底面半徑為1的圓柱分別從縱橫兩個(gè)方向嵌入棱長(zhǎng)為2的正方體時(shí)(如圖b),兩圓柱公共部分形成的幾何體(如圖c)即得一個(gè)“牟合方蓋”,圖d是該“牟合方蓋”的直觀圖(圖中標(biāo)出的各點(diǎn)A,B,C,D,P,Q均在原正方體的表面上).
菁優(yōu)網(wǎng)?
由“牟合方蓋”產(chǎn)生的過(guò)程可知,圖d中的曲線PBQD為一個(gè)橢圓,則此橢圓的離心率為(  )

【考點(diǎn)】橢圓的幾何特征
【答案】A
【解答】
【點(diǎn)評(píng)】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/5/27 14:0:0組卷:79引用:4難度:0.6
相似題
  • 1.已知橢圓
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0)的一個(gè)焦點(diǎn)為F(2,0),橢圓上一點(diǎn)P到兩個(gè)焦點(diǎn)的距離之和為6,則該橢圓的方程為(  )

    發(fā)布:2024/12/29 12:30:1組卷:12引用:2難度:0.7
  • 2.已知橢圓C的兩焦點(diǎn)分別為
    F
    1
    -
    2
    2
    ,
    0
    、
    F
    2
    2
    2
    ,
    0
    ,長(zhǎng)軸長(zhǎng)為6.
    (1)求橢圓C的標(biāo)準(zhǔn)方程;
    (2)求以橢圓的焦點(diǎn)為頂點(diǎn),以橢圓的頂點(diǎn)為焦點(diǎn)的雙曲線的方程.

    發(fā)布:2024/12/29 11:30:2組卷:430引用:6難度:0.8
  • 3.阿基米德(公元前287年-公元前212年)不僅是著名的物理學(xué)家,也是著名的數(shù)學(xué)家,他利用“逼近法”得到橢圓的面積除以圓周率等于橢圓的長(zhǎng)半軸長(zhǎng)與短半軸長(zhǎng)的乘積.若橢圓C的對(duì)稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,且橢圓C的離心率為
    3
    2
    ,面積為8π,則橢圓C的方程為( ?。?/h2>

    發(fā)布:2024/12/29 12:0:2組卷:226引用:7難度:0.5
小程序二維碼
把好題分享給你的好友吧~~
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來(lái)源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請(qǐng)立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正