如圖1,已知平面四邊形BCMN是矩形,AD∥BC,BC=kAB(k>0),將四邊形ADMN沿AD翻折,使平面ADMN⊥平面BCDA,再將△ABC沿著對角線AC翻折,得到△AB1C,設(shè)頂點B1在平面ABCD上的投影為O.
(1)如圖2,當(dāng)k=2時,若點B1在MN上,且DM=1,AB>1,證明:AB1⊥平面B1CD,并求AB的長度.
(2)如圖3,當(dāng)k=3時,若點O恰好落在△ACD的內(nèi)部(不包括邊界),求二面角B1-AC-D的余弦值的取值范圍.
2
3
【考點】二面角的平面角及求法;直線與平面垂直.
【答案】見試題解答內(nèi)容
【解答】
【點評】
聲明:本試題解析著作權(quán)屬菁優(yōu)網(wǎng)所有,未經(jīng)書面同意,不得復(fù)制發(fā)布。
發(fā)布:2024/9/21 8:0:8組卷:54引用:2難度:0.5
相似題
-
1.正四棱錐P-ABCD,底面四邊形ABCD為邊長為2的正方形,
,其內(nèi)切球為球G,平面α過AD與棱PB,PC分別交于點M,N,且與平面ABCD所成二面角為30°,則平面α截球G所得的圖形的面積為 .PA=5發(fā)布:2024/12/5 8:30:6組卷:159引用:4難度:0.5 -
2.如圖,在直三棱柱ABC-A1B1C1中,AA1=AC=4,AB=3,BC=5,點D是線段BC的中點.
(1)求證:AB⊥A1C;
(2)求二面角D-CA1-A的余弦值.發(fā)布:2024/11/30 13:0:1組卷:321引用:5難度:0.6 -
3.如圖,在四棱錐P-ABCD中,底面ABCD是邊長為4的正方形,△PAD是等邊三角形,CD⊥平面PAD,E,F(xiàn),G,O分別是PC,PD,BC,AD的中點.
(1)求證:PO⊥平面ABCD;
(2)求平面EFG與平面ABCD的夾角的大?。?br />(3)線段PA上是否存在點M,使得直線GM與平面EFG所成角為,若存在,求線段PM的長;若不存在,說明理由.π6發(fā)布:2024/12/7 16:30:5組卷:520引用:9難度:0.6
把好題分享給你的好友吧~~