2012-2013學(xué)年江蘇省泰州市姜堰區(qū)高三(下)期初數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、填空題:(本大題共14小題,每小題5分,共70分.請(qǐng)將答案填入答題紙?zhí)羁疹}的相應(yīng)答題線上.)
-
1.已知集合M={1,x2},N={1,x},且集合M=N,則實(shí)數(shù)x的值為.
組卷:39引用:3難度:0.9 -
2.計(jì)算i2013=(i為虛數(shù)單位)
組卷:21引用:2難度:0.9 -
3.已知向量
=(cos36°,sin36°),a=(cos24°,sin(-24°)),則b=.a?b組卷:24引用:3難度:0.9 -
4.圓x2+y2-6x+8y=0的半徑為.
組卷:30引用:2難度:0.9 -
5.雙曲線
的離心率為.x2-y22=1組卷:241引用:11難度:0.9 -
6.已知數(shù)列{an}滿足a1=1,an+1=2an,則該數(shù)列前8項(xiàng)之和S8=.
組卷:35引用:3難度:0.7 -
7.點(diǎn)M(1,m)在函數(shù)f(x)=x3的圖象上,則該函數(shù)在點(diǎn)M處的切線方程為.
組卷:9引用:2難度:0.7 -
8.將20個(gè)數(shù)平均分為兩組,第一組的平均數(shù)為50,第二組的平均數(shù)為40,則整個(gè)數(shù)組的平均數(shù)是.
組卷:22引用:2難度:0.7
四、[必做題]第25題,第26題,每題10分,共計(jì)20分.解答時(shí)應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟.
-
25.如圖,在棱長(zhǎng)為3的正方體ABCD-A1B1C1D1中,A1E=CF=1.
(1)求兩條異面直線AC1與D1E所成角的余弦值;
(2)求直線AC1與平面BED1F所成角的正弦值.組卷:360引用:8難度:0.5 -
26.已知數(shù)列{an}的各項(xiàng)都是正數(shù),且滿足:
.a0=1,an+1=12an?(4-an),n∈N
(1)求a1,a2;
(2)證明an<an+1<2,n∈N.組卷:540引用:6難度:0.3