試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2023-2024學年四川省南充市閬中市東風中學高二(上)第一次段考數(shù)學試卷

發(fā)布:2024/9/23 10:0:8

一、單項選擇題:本題共8小題,每小題5分,共40分.

  • 1.若向量
    a
    =(2,-3,1)和
    b
    =(1,x,4)滿足條件
    a
    ?
    b
    =0,則x的值是(  )

    組卷:780引用:3難度:0.8
  • 2.直線
    3
    3
    x
    +
    y
    -
    7
    =
    0
    的傾斜角是( ?。?/h2>

    組卷:82引用:2難度:0.5
  • 3.已知平面α的一個法向量是(2,-1,1),α∥β,則下列向量可作為平面β的一個法向量的是(  )

    組卷:116引用:5難度:0.8
  • 4.已知直線l1:ax+2y+6=0,l2:x+(a-1)y+3=0,若l1∥l2,則a=( ?。?/h2>

    組卷:99引用:10難度:0.8
  • 菁優(yōu)網(wǎng)5.如圖,平行六面體ABCD-A1B1C1D1中,AC與BD的交點為M,設
    AB
    =
    a
    AD
    =
    b
    ,
    A
    A
    1
    =
    c
    ,則選項中與向量
    M
    C
    1
    相等的是( ?。?/h2>

    組卷:245引用:10難度:0.7
  • 6.設l,m,n均為直線,其中m,n在平面α內(nèi),則“l(fā)⊥α”是“l(fā)⊥m且l⊥n”的(  )

    組卷:508引用:44難度:0.9
  • 7.我們稱:兩個相交平面構成四個二面角,其中較小的二面角稱為這兩個相交平面的夾角;由正方體的四個頂點所確定的平面統(tǒng)稱為該正方體的“表截面”.則在正方體中,兩個不重合的“表截面”的夾角大小不可能為( ?。?/h2>

    組卷:99引用:4難度:0.6

四、解答題:本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步驟.

  • 菁優(yōu)網(wǎng)21.如圖,在四棱錐S-ABCD中,底面ABCD滿足AB⊥AD,AB⊥BC,SA⊥底面ABCD,且SA=AB=BC=2,AD=1.
    (1)求三棱錐C-SBD的體積;
    (2)求平面SCD與平面SAB的夾角的余弦值.

    組卷:15引用:1難度:0.4
  • 菁優(yōu)網(wǎng)22.在如圖所示的試驗裝置中,兩個正方形框架ABCD,ABEF的邊長都是1,且它們所在的平面互相垂直.活動彈子M,N分別在正方形對角線AB,BF上移動,且CM,BN的長度保持相等,記
    CM
    =
    BN
    =
    a
    0
    a
    2

    (1)求異面直線AC,BF所成角的余弦值;
    (2)a為何值時,MN的長最?。?br />(3)當MN的長最小時,求AB與平面AMN夾角的余弦值.

    組卷:18引用:1難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正