北師大新版八年級上冊《第1章 勾股定理》2023年單元測試卷(3)
發(fā)布:2024/7/26 8:0:9
一、選擇題
-
1.已知一直角三角形的木板,三邊的平方和為1800平方米,則斜邊長為( ?。?/h2>
組卷:71引用:1難度:0.7 -
2.以下列各組數(shù)據(jù)為三角形三邊,能構(gòu)成直角三角形的是( ?。?/h2>
組卷:312引用:9難度:0.9 -
3.下列各組數(shù)據(jù)中的三個數(shù),可作為三邊長構(gòu)成直角三角形的是( ?。?/h2>
組卷:101引用:3難度:0.7 -
4.下列各組數(shù)據(jù)不能作為直角三角形的三邊長的是( ?。?/h2>
組卷:56引用:4難度:0.9 -
5.已知一個Rt△的兩邊長分別為3和4,則第三邊長的平方是( ?。?/h2>
組卷:3314引用:79難度:0.9 -
6.下列幾組數(shù)中,為勾股數(shù)的是( ?。?/h2>
組卷:45引用:1難度:0.7 -
7.如圖:有一圓柱,它的高等于4cm,底面直徑等于2cm(π=3)在圓柱下底面的A點有一只螞蟻,它想吃到上底面與A相對的B點處的食物,需要爬行的最短路程大約( ?。?/h2>
組卷:137引用:2難度:0.7 -
8.如圖,一輪船以16海里/時的速度從港口A出發(fā)向東北方向航行,另一輪船以12海里/時的速度同時從港口A出發(fā)向東南方向航行,離開港口2小時后,兩船相距( ?。?/h2>
組卷:747引用:10難度:0.5
三、解答題
-
23.如圖是一個棱長為6的正方體木箱,點Q在上底面的棱上,AQ=2,一只螞蟻從P點出發(fā)沿木箱表面爬行到點Q,求螞蟻爬行的最短路程.
組卷:719引用:4難度:0.5 -
24.如圖,在邊長為6的正方形ABCD中,E是邊CD的中點,將△ADE沿AE對折至△AFE,延長EF交BC于點G;連接AG.
(1)求證:△ABG≌△AFG;
(2)求BG的長.組卷:436引用:7難度:0.5