2023年新疆高考數學第一次適應性試卷(文科)
發(fā)布:2025/1/1 11:30:3
一、選擇題:本大題共12小題,每小題5分,每小題給出的四個選項中,只有一項是符合題目要求的.
-
1.已知集合A={x|-3≤x≤0},B={x|x2≤4},C={x|x∈B,且x?A},則集合C=( )
組卷:129引用:4難度:0.8 -
2.設i為虛數單位,a為實數,且
=1+2i,則a=( ?。?/h2>51-ai組卷:237引用:3難度:0.9 -
3.已知平面向量
滿足a,b與|a-b|=3,|a|=2,|b|=1,a的夾角為( ?。?/h2>b組卷:409引用:5難度:0.7 -
4.如圖,將一個邊長為1的正三角形分成四個全等的正三角形,第一次挖去中間的一個小三角形,將剩下的三個小正三角形,再分別從中間挖去一個小三角形,保留它們的邊,重復操作以上做法,得到的集合為謝爾賓斯基三角形.設An是第n次挖去的小三角形面積之和(如A1是第1次挖去的中間小三角形面積,A2是第2次挖去的三個小三角形面積之和),則前10次挖去的所有小三角形面積之和的值為( )
組卷:112引用:3難度:0.6 -
5.一個正方體被一個平面截去一部分后,剩余部分的三視圖如圖,則截去部分體積與剩余部分體積的比值為( )
組卷:7417引用:68難度:0.9 -
6.若拋物線y2=2px(p>0)的焦點也是雙曲線x2-y2=p的一個焦點,則此拋物線的方程為( )
組卷:71引用:2難度:0.7 -
7.在等差數列{an}中,若a1=1923,am=1953,an=2023,則m+n的最小值是( )
組卷:141引用:3難度:0.7
請考生在第22、23題中任選一題作答,如果多做,則按所做的第一題計分,作答時請用2B鉛筆在答題卡上把所選題目的題號涂黑.[選修4-4:坐標系與參數方程]
-
22.在平面直角坐標系xOy中,以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C1的極坐標方程為ρ=2cosθ,曲線C2的極坐標方程為
.ρ=225+3cos2θ
(1)寫出曲線C2的參數方程;
(2)設A是曲線C1上的動點,B是曲線C2上的動點,求A,B之間距離的最大值.組卷:133難度:0.6
[選修4-5:不等式選講]
-
23.已知a,b,c∈R+,a2+b2+c2=9,求證:
(1);abc≤33
(2).a2b+c+b2c+a+c2a+b>a+b+c3組卷:58難度:0.6