試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2021-2022學年河南省周口市商水實驗高級中學高一(下)開學數(shù)學試卷

發(fā)布:2024/10/26 18:30:2

一、單項選擇題:(本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題意要求的.)

  • 1.已知
    sin
    π
    6
    +
    α
    =
    -
    4
    5
    ,則
    cos
    π
    3
    -
    α
    =(  )

    組卷:2039引用:7難度:0.8
  • 2.
    a
    =
    1
    3
    -
    0
    .
    8
    ,b=30.9,c=log0.70.8,則a,b,c的大小關系為( ?。?/h2>

    組卷:800引用:6難度:0.7
  • 3.函數(shù)f(x)=log3x-
    4
    x
    的零點所在的區(qū)間是( ?。?/h2>

    組卷:418引用:8難度:0.7
  • 菁優(yōu)網(wǎng)4.已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ≤π)的部分圖象如圖所示,則f(x)的解析式是( ?。?/h2>

    組卷:651引用:6難度:0.8
  • 5.函數(shù)①f(x)=sinx+cosx,②f(x)=sinxcosx,③
    f
    x
    =
    co
    s
    2
    x
    +
    π
    4
    -
    1
    2
    中,周期是π且為奇函數(shù)的所有函數(shù)的序號是( ?。?/h2>

    組卷:450引用:4難度:0.7
  • 6.函數(shù)
    f
    x
    =
    e
    x
    -
    e
    -
    x
    |
    x
    |
    的圖象大致為( ?。?/h2>

    組卷:82引用:4難度:0.8
  • 7.已知正數(shù)x,y滿足20x+21y=xy,則
    x
    21
    +
    y
    20
    的最小值為(  )

    組卷:379引用:2難度:0.7

三、解答題:(本題共6小題,共70分.解答應寫出文字說明、證明過程或演算步?.)

  • 21.已知函數(shù)
    f
    x
    =
    1
    x
    2
    -
    x
    是定義在(0,+∞)上的函數(shù).
    (Ⅰ)用定義法證明函數(shù)f(x)的單調(diào)性;
    (Ⅱ)若關于x的不等式
    f
    x
    2
    +
    2
    x
    +
    m
    x
    0
    恒成立,求實數(shù)m的取值范圍.

    組卷:171引用:3難度:0.7
  • 22.設函數(shù)
    f
    x
    =
    2
    sin
    2
    ωx
    -
    π
    6
    +
    m
    的圖象關于直線x=π對稱,其中
    0
    ω
    1
    2

    (1)求f(x)的最小正周期;
    (2)若函數(shù)y=f(x)的圖象過點(π,0),求f(x)在
    [
    0
    3
    π
    2
    ]
    上的值域;

    組卷:50引用:2難度:0.7
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內(nèi)改正