2022-2023學(xué)年浙江省臺州市黃巖區(qū)七年級(下)期末數(shù)學(xué)試卷
發(fā)布:2024/7/1 8:0:9
一、選擇題(本題有10小題,每小題3分,共30分、請選出各題中一個符合題意的正確選項,不選、多選、錯選,均不給分)
-
1.點P(-1,3)所在的象限為( )
組卷:127引用:6難度:0.7 -
2.如圖,OA⊥OB,OC是一條射線.若∠AOC=120°,則∠BOC的度數(shù)是( ?。?/h2>
組卷:30引用:1難度:0.7 -
3.正方形的面積是13,估計它的邊長大小在( ?。?/h2>
組卷:84引用:5難度:0.7 -
4.疫情過后,為了解某市600萬民眾的身體健康狀況,從中任意抽取1000人進(jìn)行調(diào)查.在這個問題中,這1000人的身體健康狀況是( ?。?/h2>
組卷:27引用:1難度:0.7 -
5.若
是方程3x-ky=10的解,則k的值是( )x=2y=1組卷:157引用:2難度:0.9 -
6.兩個不等式的解集在數(shù)軸上表示如圖,則這兩個不等式組成的不等式組的解集是( ?。?/h2>
組卷:57引用:1難度:0.8 -
7.下列命題中,真命題的是( )
組卷:45引用:1難度:0.7 -
8.一次智力測驗,有20道選擇題.評分標(biāo)準(zhǔn)是:對1題給5分,錯1題扣2分,不答題不給分也不扣分.小明有兩道題未答,要使總分不低于60分,那么小明至少答對的題數(shù)是( ?。?/h2>
組卷:658引用:2難度:0.5
三、解答題(本題有8大題,第17,18題每題6分,第19~22題每題8分,第23題10分,第24題12分,共66分)
-
23.已知直線AC∥OB,OA⊥OB,垂足為點O,點A,B分別在直線OA,OB上.點P是平面上任一點,連接PA,PB.
(1)當(dāng)點P在如圖1所示位置時,∠OBP=30°,∠OAP=20°,則∠APB=°;
(2)當(dāng)點P移動到如圖2所示位置時,求∠OBP,∠OAP,∠APB之間的數(shù)量關(guān)系,并說明理由;
(3)如圖3,在(2)的條件下分別作∠OBP,∠OAP的角平分線交于點Q,
①若∠P=60°,求∠Q的度數(shù);
②請直接寫出∠P和∠Q的數(shù)量關(guān)系.組卷:194引用:1難度:0.5 -
24.定義:已知平面上兩點A(x1,y1),B(x2,y2),稱d(A,B)=|x1-x2|+|y1-y2|為A,B兩點之間的折線距離.例如點M(2,-3)與點N(5,2)之間的折線距離為d(M,N)=|2-5|+|-3-2|=3+5=8.如圖,已知平面直角坐標(biāo)系中點A(2,1),B(-1,0).
(1)d(A,B)=;
(2)過點B作直線l平行于y軸,求直線l上與點A的折線距離為5的點的坐標(biāo);
(3)已知點N(n,n),且d(A,N)<2,求n的取值范圍;
(4)已知平面上點P與原點O的折線距離為3,即d(P,O)=3,直接寫出所有滿足條件的點P圍成的圖形面積.組卷:81引用:2難度:0.5