2022-2023學(xué)年廣東省梅州市豐順縣三友聯(lián)合中學(xué)八年級(下)開學(xué)數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、單選題:本大題共10小題,每小題3分,共30分。
-
1.若分式
有意義,則x的取值范圍是( )1x-1組卷:1595引用:27難度:0.9 -
2.化簡(-x)3?(-x)2的結(jié)果正確的是( ?。?/h2>
組卷:1611引用:10難度:0.7 -
3.一副三角板如圖擺放,且AB∥CD,則∠1的度數(shù)為( ?。?/h2>
組卷:358引用:3難度:0.7 -
4.已知一個等腰三角形一腰上的高與另一腰的夾角為40°,則這個等腰三角形頂角的度數(shù)為( ?。?/h2>
組卷:854引用:7難度:0.7 -
5.如圖,有一個平行四邊形ABCD和一個正方形CEFG,其中點(diǎn)E在邊AD上.若∠ECD=43°,∠AEF=28°,則∠B的度數(shù)為( ?。?/h2>
組卷:929引用:7難度:0.5 -
6.如圖,在△ABC中,AB=AC=6,∠BAC=120°,過點(diǎn)A作AD⊥BA交BC于點(diǎn)D,過點(diǎn)D作DE⊥BC交AC于點(diǎn)E,則AE的長為( ?。?/h2>
組卷:566引用:7難度:0.6 -
7.在函數(shù)y=
中,自變量x的取值范圍是( ?。?/h2>2-xx組卷:442引用:9難度:0.7 -
8.如圖,在矩形ABCD中,AB=4,BC=3,CE=2BE,EF=2,連接AF,將線段AF繞著點(diǎn)A順時針旋轉(zhuǎn)90°得到AP,則線段PE的最小值為( ?。?/h2>
組卷:920引用:8難度:0.5
三、解答題:第18,19.20小題6分,第21,22,23小題9分,第24,25小題10分。
-
24.在四邊形ABCD中.
(1)如圖1,AB=AD,∠ABC=∠ADC=90°,E,F(xiàn)分別是BC,CD上的點(diǎn),且∠EAF=∠DAB,探究圖中EF,BE,DF之間的數(shù)量關(guān)系.12
小林同學(xué)探究此問題的方法是:延長CB到點(diǎn)G,使BG=DF.連接AG,先對比△ABG與△ADF的關(guān)系,再對比△AEF與△AEG的關(guān)系,可得出EF、BE、DF之間的數(shù)量關(guān)系,他的結(jié)論是 ;
(2)如圖2,在四邊形ABCD中,AB=AD,∠B+∠ADF=180°,E、F分別是BC,CD上的點(diǎn),且∠EAF=∠DAB,則上述結(jié)論是否仍然成立,請說明理由.12
(3)如圖3,在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD,若點(diǎn)F在CB的延長線上,點(diǎn)E在CD的延長線上,若EF=BF+DE,請寫出∠EAF與∠DAB的數(shù)量關(guān)系,并給出證明過程.組卷:432引用:11難度:0.1 -
25.(1)如圖①,在四邊形ABCD中,AB=AD,∠B=∠ADC=90°.E,F(xiàn)分別是BC,CD上的點(diǎn),且EF=BE+FD探究圖中∠BAE,∠FAD,∠EAF之間的數(shù)量關(guān)系.小王同學(xué)探究此問題的方法:延長FD到點(diǎn)G,使DG=BE.連接AG.先證明△ABE≌△ADG,再證△AEF≌△AGF,可得出結(jié)論,他的結(jié)論應(yīng)是 .
(2)如圖②,在四邊形ABCD中,AB=AD,∠B+∠D=180°.E,F(xiàn)分別是BC,CD上的點(diǎn),且EF=BE+FD,上述結(jié)論是否仍然成立?請說明理由.
(3)如圖③,在四邊形ABCD中,∠ABC+∠ADC=180°,AB=AD.若點(diǎn)E在CB的延長線上,點(diǎn)F在CD的延長線上,仍然滿足EF=BE+FD,請寫出∠EAF與∠DAB的數(shù)量關(guān)系.組卷:245引用:9難度:0.1