2023-2024學年福建省福州市鼓樓十五中、格致中學(鼓山校區(qū))、教院二附中、銅盤中學、福州十中高二(上)期中數學試卷
發(fā)布:2024/10/9 1:0:1
一、單選題(本大題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項符合題目要求.)
-
1.直線
的傾斜角為( ?。?/h2>x+3y-1=0組卷:286引用:40難度:0.9 -
2.若直線l的方向向量為
,平面α的法向量為a=(1,0,2)=(-2,0,-4),則( ?。?/h2>n組卷:669引用:28難度:0.7 -
3.已知直線l過點(1,2),且在y軸上的截距為x軸上的截距的兩倍,則直線l的方程是( )
組卷:244引用:6難度:0.7 -
4.如圖,空間四邊形OABC中,
,點M在OA=a,OB=b,OC=c上,且OM=2MA,點N為BC中點,則OA=( )MN組卷:2406引用:132難度:0.9 -
5.設a,b為實數,若直線ax+by=1與圓x2+y2=1相交,則點P(a,b)與圓的位置關系是( ?。?/h2>
組卷:312引用:9難度:0.7 -
6.設x,y∈R,向量
=(x,1,1),a=(1,y,1),b=(2,-4,2),且c⊥a,c∥b,則|c+a|=( )b組卷:2616難度:0.8 -
7.阿波羅尼斯是古希臘著名數學家,與阿基米德、歐幾里得并稱為亞歷山大時期數學三巨匠,他研究發(fā)現:如果一個動點P到兩個定點的距離之比為常數λ(λ>0,且λ≠1),那么點P的軌跡為圓,這就是著名的阿波羅尼斯圓.若點C到A(-1,0),B(1,0)的距離之比為
,則點C到直線x-2y+8=0的距離的最小值為( ?。?/h2>3組卷:209難度:0.5
四、解答題(本大題共6小題,共70分。解答應寫文字說明,證明過程或演算步驟)
-
21.在四棱錐P-ABCD中,底面ABCD為直角梯形,AD∥BC,AD⊥AB,側面PAB⊥底面ABCD,PA=PB=AD=
BC=2,且E,F分別為PC,CD的中點.12
(1)證明:DE∥平面PAB;
(2)若直線PF與平面PAB所成的角為60°,求平面PAB與平面PCD所成銳二面角的余弦值.組卷:268引用:24難度:0.6 -
22.已知圓M與直線
相切于點3x-7y+4=0,圓心M在x軸上.(1,7)
(1)求圓M的方程;
(2)過點M且不與x軸重合的直線與圓M相交于A,B兩點,O為坐標原點,直線OA,OB分別與直線x=8相交于C,D兩點,記△OAB,△OCD的面積分別是S1、S2.求的取值范圍.S1S2組卷:169引用:9難度:0.5