試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

人教B版(2019)選擇性必修第三冊《5.5 數(shù)學歸納法》2021年同步練習卷(2)

發(fā)布:2024/4/20 14:35:0

一、基礎鞏固

  • 1.用數(shù)學歸納法證明等式1+2+3+…+(2n+1)=(n+1)(2n+1)時,從n=k到n=k+1等式左邊需增添的項是( ?。?/h2>

    組卷:350引用:7難度:0.7
  • 2.設k∈N*,若數(shù)列{an}是無窮數(shù)列,且滿足對任意實數(shù)k不等式(kan-2)(an-k)<0恒成立,則下列選項正確的是( ?。?/h2>

    組卷:167引用:2難度:0.3
  • 3.已知數(shù)列{an}的前n項和
    S
    n
    =
    n
    2
    ,數(shù)列{bn}滿足
    b
    n
    =
    lo
    g
    a
    a
    n
    +
    1
    a
    n
    0
    a
    1
    ,Tn是數(shù)列{bn}的前n項和,若
    M
    n
    =
    1
    2
    lo
    g
    a
    a
    n
    +
    1
    ,則Tn與Mn的大小關系是( ?。?/h2>

    組卷:22引用:2難度:0.6
  • 4.用數(shù)學歸納法證明對任意正整數(shù)n,都有
    1
    n
    +
    1
    +
    1
    n
    +
    2
    +…+
    1
    2
    n
    13
    24
    的過程中,由n=k推導n=k+1時,不等式的左邊增加的式子為( ?。?/h2>

    組卷:206引用:3難度:0.5

二、拓展提升

  • 11.對于任意的x>1,n∈N*,用數(shù)學歸納法證明:ex-1
    x
    n
    n
    !

    組卷:174引用:2難度:0.5
  • 12.已知數(shù)列{xn}滿足
    x
    1
    =
    1
    2
    ,且
    x
    n
    +
    1
    =
    x
    n
    2
    -
    x
    n
    n
    N
    +

    (1)用數(shù)學歸納法證明:0<xn<1;
    (2)設
    a
    n
    =
    1
    x
    n
    ,求數(shù)列{an}的通項公式.

    組卷:42引用:2難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正