試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2023-2024學年重慶市九龍坡區(qū)鐵路中學高二(上)期中數(shù)學試卷

發(fā)布:2024/9/27 1:0:4

一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.
    a
    =
    1
    ,
    y
    ,
    2
    ,
    b
    =
    1
    ,-
    1
    ,-
    1
    ,且
    a
    b
    ,則y等于(  )

    組卷:59引用:4難度:0.8
  • 2.已知點A(1,3),B(5,7),則線段AB的垂直平分線所在的直線方程為( ?。?/h2>

    組卷:172引用:6難度:0.7
  • 菁優(yōu)網(wǎng)3.如圖,空間四邊形OABC中,
    OA
    =
    a
    ,
    OB
    =
    b
    ,
    OC
    =
    c
    ,點M在
    OA
    上,且滿足
    OM
    =2
    MA
    ,點N為BC的中點,則
    NM
    =( ?。?/h2>

    組卷:320引用:12難度:0.7
  • 4.直線y=x-1被橢圓2x2+y2=4所截得的弦的中點坐標是( ?。?/h2>

    組卷:269引用:5難度:0.7
  • 5.已知圓C過點A(7,-2),B(4,1),且圓心在x軸上,則圓C的方程是(  )

    組卷:208引用:3難度:0.7
  • 6.已知a、b、c成等差數(shù)列,則直線ax-by+c=0被曲線x2+y2-2x-2y=0截得的弦長的最小值為( ?。?/h2>

    組卷:119引用:5難度:0.7
  • 7.已知EF是棱長為8的正方體外接球的一條直徑,點M在正方體表面上運動,則
    ME
    ?
    MF
    的最小值為( ?。?/h2>

    組卷:184引用:11難度:0.7

四、解答題:本題共6個小題,共70分.解答應寫出文字說明,證明過程或演算步驟.

  • 菁優(yōu)網(wǎng)21.如圖,在多面體ABCDE中,平面ACD⊥平面ABC,BE⊥平面ABC,△ABC和△ACD均為正三角形,
    AC
    =
    2
    ,
    BE
    =
    3
    ,點M為線段CD上一點.
    (1)求證:DE⊥AM;
    (2)若EM與平面ACD所成角為
    π
    3
    ,求平面AMB與平面ACD所成銳二面角的余弦值.

    組卷:282引用:5難度:0.5
  • 22.如圖,橢圓
    C
    1
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =
    1
    a
    b
    0
    和圓
    C
    2
    x
    2
    +
    y
    2
    =
    b
    2
    ,已知圓C2將橢圓C1的長軸三等分,橢圓C1右焦點到右頂點的距離為
    3
    -
    2
    2
    ,橢圓C1的下頂點為E,過坐標原點O且與坐標軸不重合的任意直線l與圓C2相交于點A,B.
    (1)求橢圓C1的方程;
    (2)若直線EA,EB分別與橢圓C1相交于另一個交點為點P,M,求證:直線PM經(jīng)過定點.菁優(yōu)網(wǎng)

    組卷:111引用:3難度:0.5
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網(wǎng) | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網(wǎng)部分資源來源于會員上傳,除本網(wǎng)組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個工作日內改正