人教B版(2019)選擇性必修第一冊(cè)《2.3.1 圓的標(biāo)準(zhǔn)方程》2021年同步練習(xí)卷(2)
發(fā)布:2024/12/17 6:0:2
一、選擇題
-
1.已知A(3,-2),B(-5,4),則以AB為直徑的圓的方程是( ?。?/h2>
組卷:328引用:12難度:0.9 -
2.方程(x-1)
=0所表示的曲線是( ?。?/h2>x2+y2-3組卷:117引用:3難度:0.6 -
3.如圖,圓C的部分圓弧在如圖所示的網(wǎng)格紙上(小正方形的邊長為1),圖中直線與圓弧相切于一個(gè)小正方形的頂點(diǎn),若圓C經(jīng)過點(diǎn)A(2,15),則圓C的半徑為( ?。?/h2>
組卷:24引用:3難度:0.7 -
4.已知半徑為1的圓經(jīng)過點(diǎn)(3,4),則其圓心到原點(diǎn)的距離的最小值為( ?。?/h2>
組卷:4631引用:26難度:0.9
三、解答題
-
11.已知圓C的圓心在直線x-3y=0上,且與y軸相切于點(diǎn)(0,1).
(Ⅰ)求圓C的方程;
(Ⅱ)若圓C與直線l:x-y+m=0交于A,B兩點(diǎn),分別連接圓心C與A,B兩點(diǎn),若CA⊥CB,求m的值.組卷:199引用:3難度:0.7 -
12.已知拋物線C:y2=2x,過點(diǎn)(2,0)的直線l交C于A,B兩點(diǎn),圓M是以線段AB為直徑的圓.
(1)證明:坐標(biāo)原點(diǎn)O在圓M上;
(2)設(shè)圓M過點(diǎn)P(4,-2),求直線l與圓M的方程.組卷:4689引用:8難度:0.4