2000年上海市“新知杯”初中數(shù)學競賽試卷
發(fā)布:2024/12/31 8:30:2
一、填空題(每小題7分,共70分)
-
1.如圖,已知?ABCD中,過點B的直線與AC相交于點E、與AD相交于點F、與CD的延長線相交于點G,若BE=5,EF=2,則FG=
組卷:97引用:1難度:0.9 -
2.有四個底部都是正方形的長方體容器A、B、C、D,已知A、B的底面邊長均為3,C、D的底面邊長均為a,A、C的高均為3,B、D的高均為a,在只知道a≠3,且不考慮容器壁厚度的條件下,可判定
組卷:89引用:1難度:0.9 -
3.若n的十進制表示為99…9(共20位9),則n3的十進制表示中含有個數(shù)碼9.
組卷:94引用:1難度:0.5 -
4.在△ABC中,若AB=5,BC=6,CA=7,H為垂心,則AH=.
組卷:562引用:2難度:0.5
二、簡答題(共3小題,共50分,11題16分,12題16分,13題18分)
-
12.(1)在4×4的方格紙中,把部分小方格涂成紅色,然后劃去2行和2列,若無論怎么劃,都至少有一個紅色的小方格沒有被劃去,則至少要涂多少個小方格?證明你的結論.
(2)如果把上題中的“4×4的方格紙”改成“n×n的方格紙(n≥5)”,其他條件不變,那么,至少要涂多少個小方格?證明你的結論.組卷:187引用:1難度:0.5 -
13.如圖,ABCD是一個邊長為1的正方形,U、V分別是AB、CD上的點,AV與DU相交于點P,BV與CU相交于點Q.求四邊形PUQV面積的最大值.
組卷:578引用:4難度:0.1