試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2021-2022學年遼寧省六協作體高二(下)期初數學試卷

發(fā)布:2024/12/6 15:30:2

一、單項選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個選項中,只有一項是符合題目要求的.

  • 1.已知直線l經過點A(0,4),且與直線2x-y-3=0垂直,則直線l的方程是( ?。?/h2>

    組卷:485引用:2難度:0.8
  • 2.將4張相同的博物館的參觀票分給5名同學,每名同學至多1張,并且票必須分完,那么不同的分法的種數為( ?。?/h2>

    組卷:117難度:0.8
  • 3.過點P(4,6)且與雙曲線
    x
    2
    -
    y
    2
    2
    =
    1
    有相同漸近線的雙曲線方程為( ?。?/h2>

    組卷:252引用:4難度:0.7
  • 4.已知橢圓
    x
    2
    5
    +
    y
    2
    m
    =1的離心率e=
    10
    5
    ,則m的值為( ?。?/h2>

    組卷:111引用:8難度:0.7
  • 5.已知
    a
    =(2,-1,3),
    b
    =(-1,4,-2),
    c
    =(1,3,λ),若
    a
    ,
    b
    ,
    c
    三向量共面,則實數λ等于( ?。?/h2>

    組卷:437引用:67難度:0.7
  • 6.
    x
    -
    2
    x
    2
    n
    的展開式中只有第6項的二項式系數最大,則該二項式的展開式中常數項為( ?。?/h2>

    組卷:413引用:7難度:0.8
  • 7.已知正四面體ABCD中,E是AB的中點,則異面直線CE與BD所成角的余弦值為(  )

    組卷:3040引用:54難度:0.9

四、解答題:本題共6小題,共70分。解答應寫出文字說明,證明過程或演算步驟。

  • 菁優(yōu)網21.如圖,在三棱柱ABC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影為BC的中點,D是B1C1的中點.
    (1)證明:A1D⊥平面A1BC;
    (2)求二面角B-A1D-B1的平面角的正切值.

    組卷:263難度:0.5
  • 22.已知橢圓C:
    x
    2
    a
    2
    +
    y
    2
    b
    2
    =1(a>b>0),F為左焦點,上頂點P到F的距離為2,且離心率為
    3
    2

    (1)求橢圓C的標準方程;
    (2)設斜率為k的動直線l與橢圓C交于M,N兩點,且|PM|=|PN|,求k的取值范圍.

    組卷:59引用:2難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯系并提供證據,本網將在三個工作日內改正