試卷征集
加入會(huì)員
操作視頻
當(dāng)前位置: 試卷中心 > 試卷詳情

2023年山西省運(yùn)城中學(xué)高考數(shù)學(xué)二模試卷

發(fā)布:2024/7/13 8:0:9

一、選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.

  • 1.已知R為實(shí)數(shù)集,全集U=R,集合A={x||x-1|<2},B={x|x≥1},則?U(A∩B)=(  )

    組卷:315引用:4難度:0.7
  • 2.已知i為虛數(shù)單位,若
    3
    +
    i
    a
    +
    2
    i
    1
    +
    i
    為實(shí)數(shù),則實(shí)數(shù)a=( ?。?/h2>

    組卷:74引用:6難度:0.8
  • 3.函數(shù)f(x)=xex-2ex+x+e在(1,f(1))處的切線方程為(  )

    組卷:75引用:3難度:0.7
  • 4.已知
    0
    x
    1
    x
    2
    2
    π
    ,
    sin
    x
    1
    =
    sin
    x
    2
    =
    1
    3
    ,則cos(x1-x2)=( ?。?/h2>

    組卷:104引用:4難度:0.7
  • 菁優(yōu)網(wǎng)5.風(fēng)箏又稱為“紙鳶”,由中國古代勞動(dòng)人民發(fā)明于距今2000多年的東周春秋時(shí)期,相傳墨翟以木頭制成木鳥,研制三年而成,是人類最早的風(fēng)箏起源.如圖,是某高一年級學(xué)生制作的一個(gè)風(fēng)箏模型的多面體ABCEF,D為AB的中點(diǎn),四邊形EFDC為矩形,且DF⊥AB,AC=BC=2,∠ACB=120°,當(dāng)AE⊥BE時(shí),多面體ABCEF的體積為( ?。?/h2>

    組卷:156引用:6難度:0.5
  • 6.已知F為拋物線C:y2=3x的焦點(diǎn),過F的直線l交拋物線C于A,B兩點(diǎn),若|AF|=λ|BF|=λ,則λ=( ?。?/h2>

    組卷:161引用:4難度:0.5
  • 7.已知△ABC是邊長為2的等邊三角形,M,N是△ABC邊上的兩個(gè)動(dòng)點(diǎn),若線段MN將△ABC分成面積相等的兩部分,則線段MN長度的最小值為( ?。?/h2>

    組卷:104引用:5難度:0.5

四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.

  • 21.已知點(diǎn)P(4,3)為雙曲線
    E
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    b
    0
    上一點(diǎn),E的左焦點(diǎn)F1到一條漸近線的距離為
    3

    (1)求雙曲線E的標(biāo)準(zhǔn)方程;
    (2)不過點(diǎn)P的直線y=kx+t與雙曲線E交于A,B兩點(diǎn),若直線PA,PB的斜率和為1,證明:直線y=kx+t過定點(diǎn),并求該定點(diǎn)的坐標(biāo).

    組卷:165引用:4難度:0.3
  • 22.已知函數(shù)f(x)=x2+2cosx,f′(x)為函數(shù)f(x)的導(dǎo)函數(shù).
    (1)討論函數(shù)f(x)的單調(diào)性;
    (2)已知函數(shù)g(x)=f′(x)-5x+5alnx,存在g(x1)=g(x2)(x1≠x2),證明x1+x2>2a.

    組卷:214引用:5難度:0.4
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應(yīng)用名稱:菁優(yōu)網(wǎng) | 應(yīng)用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務(wù)條款
本網(wǎng)部分資源來源于會(huì)員上傳,除本網(wǎng)組織的資源外,版權(quán)歸原作者所有,如有侵犯版權(quán),請立刻和本網(wǎng)聯(lián)系并提供證據(jù),本網(wǎng)將在三個(gè)工作日內(nèi)改正