2020-2021學(xué)年江蘇省南京市建鄴區(qū)中華中學(xué)高二(上)午練數(shù)學(xué)試卷(12.30)
發(fā)布:2025/1/5 21:30:2
一、選擇題
-
1.如果復(fù)數(shù)z=a2+a-2+(a2-3a+2)i為純虛數(shù),那么實(shí)數(shù)a的值為( ?。?/h2>
組卷:658引用:38難度:0.9 -
2.設(shè)a,b∈R,i是虛數(shù)單位,則“ab=0”是“復(fù)數(shù)a-bi為純虛數(shù)”的( ?。?/h2>
組卷:35引用:4難度:0.9 -
3.若復(fù)數(shù)z=(m+2)+(m2-9)i(m∈R)是正實(shí)數(shù),則實(shí)數(shù)m的值為( ?。?/h2>
組卷:79引用:2難度:0.7 -
4.若復(fù)數(shù)z1=sin2θ+icosθ,z2=cos
sinθ(θ∈R),z1=z2,則θ等于( )θ+i3組卷:32引用:2難度:0.6
解答題
-
11.已知數(shù)列{an}的各項(xiàng)均為正數(shù),其前n項(xiàng)和Sn滿足Sn=
(an2+2an-3)(n∈N*),數(shù)列{bn}是公差為正數(shù)的等差數(shù)列,且b2=5,b1,b3,b11成等比數(shù)列.14
(Ⅰ)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)令cn=,求數(shù)列{cn}的前n項(xiàng)和Tn.1an(2bn-1)組卷:837引用:3難度:0.3 -
12.已知點(diǎn)Pn(n,an)(n∈N*)在直線l:y=2x-1上,數(shù)列{bn}的前n項(xiàng)和為Sn,已知b1=1,Sn+1-2Sn=1(n∈N*).
(1)求數(shù)列{an},{bn}的通項(xiàng)公式;
(2)已知數(shù)列{an?bn}的前n項(xiàng)和為Tn,若對任意n≥2,n∈N*,均有(Tn-3)k≥4n2-24n+27成立,求實(shí)數(shù)k的取值范圍.組卷:217引用:3難度:0.3