2021-2022學(xué)年江蘇省常州市溧陽(yáng)中學(xué)高一(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/7 11:0:1
一、單項(xiàng)選擇題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.設(shè)集合A={x|-2<x<4},B={2,3,4,5},則A∩B=( ?。?/h2>
組卷:210引用:19難度:0.7 -
2.命題“?x∈R,x2≥0”的否定為( ?。?/h2>
組卷:23引用:3難度:0.8 -
3.二次函數(shù)y=ax2+bx+c的部分對(duì)應(yīng)值如下表:
x -3 -2 -1 0 1 2 3 4 y 6 0 -4 -6 -6 -4 0 6 組卷:2引用:1難度:0.7 -
4.已知f(x)是定義在[a,b]上的函數(shù),那么“函數(shù)f(x)在[a,b]上單調(diào)遞增”是“函數(shù)f(x)在[a,b]上的最小值為f(a)”的( ?。?/h2>
組卷:6引用:2難度:0.7 -
5.設(shè)m>0,n>0,且2m+5n=20,則mn的最大值為( )
組卷:29引用:3難度:0.8 -
6.若3x=5y=k,且
,則k的值為( )1x+1y=2組卷:14引用:1難度:0.7 -
7.在數(shù)學(xué)中,常用函數(shù)圖象來研究函數(shù)性質(zhì),也常用函數(shù)解析式來分析函數(shù)圖象的特征.已知函數(shù)f(x)的部分圖象如圖所示,則函數(shù)f(x)的解析式可能為( )
組卷:10引用:1難度:0.5
四、解答題:本題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.
-
21.為防止未成年人沉迷網(wǎng)絡(luò)游戲,切實(shí)保護(hù)未成年人身心健康,2021年8月30日,國(guó)家新聞出版署下發(fā)《關(guān)于進(jìn)一步嚴(yán)格管理切實(shí)防止未成年人沉迷網(wǎng)絡(luò)游戲的通知》,通知要求:“嚴(yán)格限制向未成年人提供網(wǎng)絡(luò)游戲服務(wù)的時(shí)間,所有網(wǎng)絡(luò)游戲企業(yè)僅可在周五,周六,周日和法定節(jié)假日每日20時(shí)至21時(shí)向未成年人提供1小時(shí)服務(wù),其他時(shí)間均不得以任何形式向未成年人提供網(wǎng)絡(luò)游戲服務(wù).”為落實(shí)上述通知要求,某網(wǎng)絡(luò)游戲企業(yè)對(duì)新出品的一款游戲沒定了“防沉迷系統(tǒng)”,規(guī)則如下:
①0到45分鐘(不含0,含45分鐘)為正常游戲時(shí)間,玩家在這段時(shí)間內(nèi)獲得的累積經(jīng)驗(yàn)值E與游戲時(shí)間t(分鐘)滿足關(guān)系式:;E=19t2+4t+a
②45到55分鐘(含55分鐘)為視力疲勞時(shí)間,玩家在這段時(shí)間內(nèi)獲得的經(jīng)驗(yàn)值為0(即累積經(jīng)驗(yàn)值不變);
③55到60分鐘(含60分鐘)為下線提醒時(shí)間,累積經(jīng)驗(yàn)值開始減少,玩家每多玩1分鐘,累積經(jīng)驗(yàn)值將減少64;
④1小時(shí)后,無論玩家是否退出游戲,平臺(tái)都將自動(dòng)關(guān)閉.
(1)當(dāng)a=15時(shí),求出累積經(jīng)驗(yàn)值E與游戲時(shí)間t(0<t≤60)的函數(shù)關(guān)系式E=f(t);
(2)該游戲企業(yè)把累積經(jīng)驗(yàn)值E與游戲時(shí)間t的比值稱為“玩家愉悅指數(shù)”,記作H(t),若a>0且該游戲企業(yè)希望在正常游戲時(shí)間內(nèi),這款游戲的“玩家愉悅指數(shù)”不低于6,求a的最小值.組卷:51引用:3難度:0.6 -
22.設(shè)二次函數(shù)f(x)=ax2+bx+1(a>0).
(1)若x1,x2是函數(shù)f(x)的兩個(gè)零點(diǎn)(x1<x2),且f(x)最小值為-a.
①求證:x2-x1=2;
②當(dāng)且僅當(dāng)a在什么范圍內(nèi)時(shí),函數(shù)g(x)=f(x)+2x在區(qū)間(x1,x2)上存在最小值?
(2)若任意實(shí)數(shù)t,在閉區(qū)間[t-2,t+2]上總存在兩實(shí)數(shù)m,n,使得|f(m)-f(n)|≥2021成立,求實(shí)數(shù)a的取值范圍.組卷:52引用:2難度:0.6