2020學(xué)年人教新版九年級(jí)上學(xué)期《24.2.1 點(diǎn)和圓的位置關(guān)系》中考真題套卷(2)
發(fā)布:2024/4/20 14:35:0
一、選擇題(共10小題)
-
1.如圖,已知⊙O是等腰Rt△ABC的外接圓,點(diǎn)D是
上一點(diǎn),BD交AC于點(diǎn)E,若BC=4,AD=?AC,則AE的長(zhǎng)是( )45組卷:5454引用:16難度:0.7 -
2.在公園的O處附近有E、F、G、H四棵樹,位置如圖所示(圖中小正方形的邊長(zhǎng)均相等)現(xiàn)計(jì)劃修建一座以O(shè)為圓心,OA為半徑的圓形水池,要求池中不留樹木,則E、F、G、H四棵樹中需要被移除的為( ?。?br />
組卷:3154引用:19難度:0.7 -
3.如圖,△ABC是⊙O的內(nèi)接三角形,∠C=30°,⊙O的半徑為5,若點(diǎn)P是⊙O上的一點(diǎn),在△ABP中,PB=AB,則PA的長(zhǎng)為( ?。?/h2>
組卷:4823引用:17難度:0.7 -
4.如圖,在網(wǎng)格(每個(gè)小正方形的邊長(zhǎng)均為1)中選取9個(gè)格點(diǎn)(格線的交點(diǎn)稱為格點(diǎn)),如果以A為圓心,r為半徑畫圓,選取的格點(diǎn)中除點(diǎn)A外恰好有3個(gè)在圓內(nèi),則r的取值范圍為( ?。?/h2>
組卷:2458引用:15難度:0.7 -
5.如圖,⊙O的半徑為5,△ABC內(nèi)接于⊙O,且BC=8,AB=AC,點(diǎn)D在
上.若∠AOD=∠BAC,則CD的長(zhǎng)為( )?AC組卷:1270引用:8難度:0.7 -
6.如圖,點(diǎn)D、E分別是⊙O的內(nèi)接正三角形ABC的AB、AC邊上的中點(diǎn),若⊙O的半徑為2,則DE的長(zhǎng)等于( ?。?/h2>
組卷:1289引用:4難度:0.7
三、解答題(共5小題)
-
19.如圖,已知等腰直角三角形ABC,點(diǎn)P是斜邊BC上一點(diǎn)(不與B,C重合),PE是△ABP的外接圓⊙O的直徑.
(1)求證:△APE是等腰直角三角形;
(2)若⊙O的直徑為2,求PC2+PB2的值.組卷:5454引用:20難度:0.3 -
20.請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù):
阿基米德折弦定理
阿基米德(archimedes,公元前287-公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一,他與牛頓、高斯并稱為三大數(shù)學(xué)王子.
阿拉伯Al-Birnmi(973-1050年)的譯文中保存了阿基米德折弦定理的內(nèi)容,蘇聯(lián)在1964年根據(jù)Al-Birnmi譯本出版了俄文版《阿基米德全集》,第一題就是阿基米德折弦定理.
阿基米德折弦定理:如圖1,AB和BC是⊙O的兩條弦(即折線ABC是圓的一條折弦),BC>AB,M是的中點(diǎn),則從M向BC所作垂線的垂足D是折弦ABC的中點(diǎn),即CD=AB+BD.下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分證明過(guò)程.證明:如圖2,在CB上截取CG=AB,連接MA,MB,MC和MG.?ABC
∵M(jìn)是的中點(diǎn),?ABC
∴MA=MC.
…
任務(wù):
(1)請(qǐng)按照上面的證明思路,寫出該證明的剩余部分;
(2)填空:如圖3,已知等邊△ABC內(nèi)接于⊙O,AB=2,D為上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長(zhǎng)是 .?AC組卷:3144引用:9難度:0.3