2022-2023學(xué)年湖北省武漢市江岸區(qū)高二(上)期末數(shù)學(xué)試卷
發(fā)布:2024/4/20 14:35:0
一、單選題:本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.
-
1.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,且a8+a14=3a11-4,則S21=( )
A.72 B.84 C.144 D.168 組卷:105引用:3難度:0.8 -
2.已知圓C:x2+y2+2kx+2y+k2=0(k<0)和定點(diǎn)P(1,-1),若過(guò)點(diǎn)P可以作兩條直線與圓C相切,則k的取值范圍是( )
A.(-∞,-1) B.(-∞,-1)∪(2,+∞) C.(-∞,-2)∪(0,+∞) D.(-∞,-2) 組卷:154引用:4難度:0.7 -
3.如果直線y=ax+2與直線y=3x-b關(guān)于直線y=x對(duì)稱,那么( ?。?/h2>
A.a(chǎn)= ,b=613B.a(chǎn)= ,b=-613C.a(chǎn)=3,b=-2 D.a(chǎn)=3,b=6 組卷:259引用:10難度:0.9 -
4.已知拋物線x2=16y的焦點(diǎn)為F,點(diǎn)P在拋物線上,點(diǎn)Q在圓E:(x-2)2+(y-6)2=4上,則|PQ|+|PF|的最小值為( )
A.12 B.10 C.8 D.6 組卷:99引用:2難度:0.5 -
5.設(shè)F是雙曲線
的右焦點(diǎn),O為坐標(biāo)原點(diǎn),過(guò)F作C的一條漸近線的垂線,垂足為H,若△FOH的內(nèi)切圓與x軸切于點(diǎn)B,且C:x2a2-y2b2=1(a>0,b>0),則C的離心率為( )BF=3OBA. 2+273B. 3+73C. 4+73D. 5+73組卷:223引用:4難度:0.6 -
6.已知數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,nan+1=2Sn,
,數(shù)列{bn}的前n項(xiàng)和為Tn,則T100=( )bn=(-1)nanA.0 B.50 C.100 D.2525 組卷:170引用:3難度:0.6 -
7.法國(guó)數(shù)學(xué)家、化學(xué)家和物理學(xué)家加斯帕爾?蒙日被稱為“畫法幾何之父”,他創(chuàng)立的畫法幾何學(xué)推動(dòng)了空間解析幾何的發(fā)展,被廣泛應(yīng)用于工程制圖當(dāng)中.過(guò)橢圓
外的一點(diǎn)作橢圓的兩條切線,若兩條切線互相垂直,則該點(diǎn)的軌跡是以橢圓的中心為圓心、以C:x2a2+y2b2=1(a>b>0)為半徑的圓,這個(gè)圓叫做橢圓的蒙日?qǐng)A.若橢圓a2+b2的蒙日?qǐng)A為E:x2+y2=7,過(guò)圓E上的動(dòng)點(diǎn)M作橢圓C的兩條切線,分別與圓E交于P,Q兩點(diǎn),直線PQ與橢圓C交于A,B兩點(diǎn),則下列結(jié)論不正確的是( ?。?/h2>C:x24+y2m=1(0<m<4)A.橢圓C的離心率為 12B.M到C的右焦點(diǎn)的距離的最大值為 7+1C.若動(dòng)點(diǎn)N在C上,記直線AN,BN的斜率分別為k1,k2,則 k1k2=-34D.△MPQ面積的最大值為 72組卷:332引用:7難度:0.5
四、解答題:共70分,解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.
-
21.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足a1=1,當(dāng)n≥2(n∈N*)時(shí),
.(n-1)Sn-(n+1)Sn-1=13(n3-n)
(1)計(jì)算:a2,a3;
(2)證明為等差數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;{Snn(n+1)}
(3)設(shè),求數(shù)列{bn+1bn}的前n項(xiàng)和Tn.bn=tanan組卷:98引用:4難度:0.6 -
22.設(shè)橢圓E:
的左右焦點(diǎn)F1,F(xiàn)2分別是雙曲線x2a2+y2b2=1(a>b>0)=1的左右頂點(diǎn),且橢圓的右頂點(diǎn)到雙曲線的漸近線的距離為x24-y2.2105
(1)求橢圓E的方程;
(2)是否存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與橢圓E恒有兩個(gè)交點(diǎn)A、B,且?若存在,寫出該圓的方程,并求|AB|的取值范圍,若不存在,說(shuō)明理由.OA⊥OB組卷:142引用:4難度:0.4