2023-2024學(xué)年福建省廈門外國語學(xué)校高一(上)期中數(shù)學(xué)試卷
發(fā)布:2024/10/17 15:0:1
一、選擇題:(本題共8小題,每小題5分,共40分.在每小題給出的四個(gè)選項(xiàng)中,只有一個(gè)選項(xiàng)是符合題目要求的)
-
1.已知全集U={x|0≤x<5,x∈N*},集合P={1,2,3},Q={2,4},則(?UP)∪Q=( )
組卷:209引用:11難度:0.8 -
2.下列四組函數(shù)中,不是同一個(gè)函數(shù)的一組是( ?。?/h2>
組卷:35引用:2難度:0.7 -
3.已知冪函數(shù)f(x)=xα的圖象過點(diǎn)
,則函數(shù)g(x)=(x-3)f(x)在區(qū)間(5,15)上的最小值是( )[13,1]組卷:274引用:6難度:0.7 -
4.函數(shù)
的大致圖象為( ?。?/h2>f(x)=|x2-1|x組卷:118引用:12難度:0.7 -
5.已知函數(shù)f(x)的定義域?yàn)閧x|x≠0},且滿足
,則f(2x)=( ?。?/h2>f(x)+2f(1x)=6x-3組卷:336引用:3難度:0.7 -
6.已知
,則( )a=243,b=425,c=523組卷:159引用:6難度:0.7 -
7.
,f(x)對(duì)于?x1,x2∈R,x1≠x2,都有f(x)=(2a-1)x+4a,(x<1)ax,(x≥1)成立,求a的取值范圍( ?。?/h2>f(x2)-f(x1)x2-x1<0組卷:233引用:6難度:0.7
四、解答題(本大題共6小題,共70分.解答應(yīng)寫出文字說明、證明過程或演算步驟.)
-
21.第19屆亞運(yùn)會(huì)2023年9月在杭州市舉辦,本屆亞運(yùn)會(huì)以“綠色、智能、節(jié)儉、文明”為辦會(huì)理念,展示杭州生態(tài)之美、文化之韻,充分發(fā)揮國際重大賽事對(duì)城市發(fā)展的牽引作用,從而促進(jìn)經(jīng)濟(jì)快速發(fā)展,籌備期間,某公司帶來了一種智能設(shè)備供采購商洽談采購,并決定大量投放當(dāng)?shù)厥袌?,已知該種設(shè)備年固定研發(fā)成本為50萬元,每生產(chǎn)一萬臺(tái)需另投入80萬元,設(shè)該公司一年內(nèi)生產(chǎn)該設(shè)備x萬臺(tái)且全部售完.當(dāng)0<x≤20時(shí),每萬臺(tái)的年銷售收入(萬元)與年產(chǎn)量x(萬臺(tái))滿足關(guān)系式:t=180-2x;當(dāng)x>20時(shí),每萬臺(tái)的年銷售收入(萬元)與年產(chǎn)量x(萬臺(tái))滿足關(guān)系式:
.t=70+2000x-9000x(x+1)
(1)寫出年利潤y(萬元)關(guān)于年產(chǎn)量x(萬臺(tái))的函數(shù)解析式(利潤=銷售收入-成本);
(2)當(dāng)年產(chǎn)量為多少萬臺(tái)時(shí),該公司獲得的年利潤最大?并求最大利潤.組卷:104引用:8難度:0.6 -
22.已知f(x)定義域?yàn)镽,對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y)-2.當(dāng)x<0時(shí),f(x)>2,且f(-2)=3.
(1)求f(2)的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并證明;
(3)若對(duì)?x∈[-3,3],?m∈[5,7],都有2f(x)-f[t2+t-2-m(t+t-1)]≤1恒成立,求實(shí)數(shù)t的取值范圍.組卷:102引用:5難度:0.5