試卷征集
加入會員
操作視頻
當前位置: 試卷中心 > 試卷詳情

2022-2023學年內蒙古鄂爾多斯一中高一(上)期末數學試卷

發(fā)布:2024/12/8 17:0:2

一、單項選擇題:本大題共8小題,每小題5分,共40分。在每小題給出的四個選項中,只有一項是符合題目要求的。

  • 1.設集合A={1,2,4},B={x|x2-4x+m=0}.若A∩B={1},則B=( ?。?/h2>

    組卷:394引用:17難度:0.9
  • 2.已知f(x)的定義域為[-2,2],函數g(x)=
    f
    x
    -
    1
    2
    x
    +
    1
    ,則g(x)的定義域為(  )

    組卷:1075引用:12難度:0.9
  • 3.設函數f(x)=x+log2x-m,則“函數f(x)在(
    1
    2
    ,4)上存在零點”是m∈(1,6)的( ?。?/h2>

    組卷:222引用:4難度:0.7
  • 4.5G技術的數學原理之一便是著名的香農公式:
    C
    =
    W
    lo
    g
    2
    1
    +
    S
    N
    .它表示:在受噪聲干擾的信道中,最大信息傳遞速率C取決于信道帶寬W、信道內信號的平均功率S、信道內部的高斯噪聲功率N的大小,其中
    S
    N
    叫做信噪比.按照香農公式,若不改變帶寬W,而將信噪比
    S
    N
    從1000提升至2000,則C大約增加了( ?。?/h2>

    組卷:212引用:10難度:0.7
  • 5.
    a
    =
    3
    5
    3
    5
    ,
    b
    =
    lo
    g
    1
    5
    3
    2
    ,
    c
    =
    3
    2
    3
    5
    ,則a、b、c的大小關系是( ?。?/h2>

    組卷:38難度:0.7
  • 6.設函數
    f
    x
    =
    ln
    1
    +
    |
    x
    |
    -
    1
    1
    +
    x
    2
    ,則使f(x)>f(2x-1)成立的x的取值范圍是(  )

    組卷:391引用:4難度:0.6
  • 7.已知函數f(x-1)(x∈R)是偶函數,且函數f(x)的圖象關于點(1,0)成中心對稱,當x∈[-1,1]時,f(x)=x-1,則f(2017)=( ?。?/h2>

    組卷:100難度:0.7

四、解答題:本大題共6小題,共70分。解答應寫出文字說明、證明過程或演算步驟。

  • 21.已知函數
    f
    x
    =
    kx
    +
    lo
    g
    9
    9
    x
    +
    1
    ,(k∈R)是偶函數.
    (Ⅰ)求k的值;
    (Ⅱ)若
    f
    x
    -
    1
    2
    x
    +
    b
    0
    對于任意x恒成立,求b的取值范圍;
    (Ⅲ)若函數
    h
    x
    =
    9
    f
    x
    +
    1
    2
    x
    +
    2
    m
    ?
    3
    x
    +
    1
    ,
    x
    [
    0
    ,
    log
    9
    8
    ]
    ,是否存在實數m使得h(x)的最小值為0?若存在,求出m的值,若不存在,請說明理由.

    組卷:415難度:0.5
  • 22.定義在D上的函數f(x),如果滿足:對任意x∈D,存在常數M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數,其中M稱為函數f(x)的上界.已知函數f(x)=1+a?(
    1
    2
    x+(
    1
    4
    x
    (1)當a=1,求函數f(x)在(-∞,0)上的值域,并判斷函數f(x)在(-∞,0)上是否為有界函數,請說明理由;
    (2)若函數f(x)在[0,+∞)上是以3為上界的有界函數,求實數a的取值范圍.

    組卷:1050引用:8難度:0.3
APP開發(fā)者:深圳市菁優(yōu)智慧教育股份有限公司| 應用名稱:菁優(yōu)網 | 應用版本:5.0.7 |隱私協(xié)議|第三方SDK|用戶服務條款
本網部分資源來源于會員上傳,除本網組織的資源外,版權歸原作者所有,如有侵犯版權,請立刻和本網聯(lián)系并提供證據,本網將在三個工作日內改正