2022-2023學(xué)年云南省保山市C、D類學(xué)校高二(上)聯(lián)考數(shù)學(xué)試卷(10月份)
發(fā)布:2024/7/26 8:0:9
一、單項(xiàng)選擇題(本大題共8小題,每小題5分,共40分.在每小題給出的選項(xiàng)中,只有一項(xiàng)是符合題目要求的)
-
1.設(shè)集合U={0,1,2,3,4,5},A={1,3,5},B={2},則?UA∪B=( ?。?/h2>
A.{2} B.{1,2,3,5} C.{0,2,4} D.? 組卷:108引用:7難度:0.8 -
2.計(jì)算
=( ?。?/h2>1-2i2-iA. -4+3i5B. -4-3i5C. 4+3i5D. 4-3i5組卷:129引用:3難度:0.8 -
3.“x>3”是“|x-1|>2”的( ?。l件.
A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要 組卷:255引用:4難度:0.7 -
4.如果a>2,那么a+
的最小值是( )1a-2A.2 B.2 2C.3 D.4 組卷:36引用:3難度:0.9 -
5.若sin(π+α)=
,α∈(π,12),則tan(π-α)等于( ?。?/h2>3π2A.- 12B.- 32C. -3D. -33組卷:40引用:3難度:0.7 -
6.為得到函數(shù)y=sin2x-cos2x的圖象,可由函數(shù)y=
sin2x的圖象( )2A.向左平移 個(gè)單位π8B.向右平移 個(gè)單位π8C.向左平移 個(gè)單位π4D.向右平移 個(gè)單位π4組卷:105引用:6難度:0.9 -
7.在長(zhǎng)方體ABCD-A1B1C1D1中,底面是邊長(zhǎng)為2的正方形,高為4,則點(diǎn)A1到截面AB1D1的距離是( ?。?/h2>
A. 83B. 38C. 43D. 34組卷:118引用:42難度:0.9
四、解答題(共70分.解答應(yīng)寫(xiě)出文字說(shuō)明,證明過(guò)程或演算步驟)
-
21.如圖(1),在直角梯形ABCD中,AB∥CD,AB⊥BC,且
,取AB的中點(diǎn)O,連接OD,并將△AOD沿著OD翻折,翻折后BC=CD=12AB=2,點(diǎn)M,N分別是線段AD,AB的中點(diǎn),如圖(2).AC=23
(1)求證:AC⊥OM;
(2)求平面OMN與平面OBCD夾角的余弦.組卷:277引用:2難度:0.5 -
22.已知直線l1:x+y-1=0與圓C:x2+y2-4ax-2ay+5a2-5=0(a>0)交于M、N兩點(diǎn),且
.|MN|=23
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若A(-2,1),點(diǎn)P、Q分別是直線l2:x+y+2=0和圓C上的動(dòng)點(diǎn),求|PQ|-|PA|的最大值及求得最大值時(shí)點(diǎn)P的坐標(biāo).組卷:129引用:3難度:0.4